Please wait a minute...
材料导报  2023, Vol. 37 Issue (15): 21100001-10    https://doi.org/10.11896/cldb.21100001
  金属与金属基复合材料 |
多孔金属材料阻尼性能的研究进展
秦若男1, 果春焕1,*, 李艳春2, 邵帅齐1, 姜风春1,3
1 哈尔滨工程大学材料科学与化学工程学院,哈尔滨 150001
2 黑龙江省科学院高技术研究院,哈尔滨 150020
3 哈尔滨工程大学烟台研究院,烟台 264000
Research Progress in Damping Performances of Porous Metal Materials
QIN Ruonan1, GUO Chunhuan1,*, LI Yanchun2, SHAO Shuaiqi1, JIANG Fengchun1,3
1 College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
2 Institute of Advanced Technology, Heilongjiang Academy of Sciences, Harbin 150020, China
3 Yantai Research Institute of Harbin Engineering University, Yantai 264000, China
下载:  全 文 ( PDF ) ( 18320KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 阻尼技术一直以来在工业生产、科技开发及应用中备受关注,且随着技术的不断发展,工业领域对阻尼材料性能的要求也越发苛刻。因此,阻尼材料研究领域聚焦在结构功能一体化材料上,以提高材料的阻尼性能,满足技术发展提出的需求。近年来迅速发展的多孔金属材料是具有广阔应用前景的结构功能一体化材料之一。
多孔金属材料的阻尼作用来源于材料阻尼和结构阻尼,但金属材料的固有阻尼性能有限,传统的造孔方法又存在孔隙分布不均匀、大小和数量不可控等不足,因此,需要通过材料的选择与组合、孔隙结构的优化、多种结构的复合等方法,提升多孔金属材料的阻尼性能。目前关于多孔金属材料的阻尼性能研究大都集中在优化材料成分、控制孔隙结构等方面,如将NiTi等高阻尼合金作为多孔金属材料基体,或根据需求加入颗粒或碳纳米管等预制空心结构的增强相,或采用蚀刻、选区激光熔化等新工艺,改善孔隙结构尺寸和分布的均匀性、可控性。这些方法都有效提升了多孔金属材料的阻尼性能,例如碳纳米管增强多孔铝合金材料在25~200 ℃以及升至390 ℃后的损耗因子分别为0.26和0.36,分别是多孔铝合金的1.77倍和2.71倍。
本文主要从多孔金属材料中基体和增强相材料的种类、孔隙结构的作用出发,对多孔金属材料的阻尼作用机理和阻尼性能研究现状进行阐述和归纳,希望为多孔金属材料结构功能一体化的发展提供更多的思路。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
秦若男
果春焕
李艳春
邵帅齐
姜风春
关键词:  多孔材料  金属  空心球  阻尼性能    
Abstract: Damping technology has always attracted much attention in industrial production, technological development and application. The damping capacities of materials used in damping technology have been demanded severely with the development of industrial technology. Therefore, the researches of damping materials focus on the structural and functional integration materials in order to meet the demand of damping perfor-mance of materials in industrial development. Porous metal materials that were developed rapidly in recent years, are one of the structural-functional integrated materials with broad application prospects.
The damping performances of porous metal materials include material damping and structural damping. Therefore, the damping capacity of po-rous metal materials can be improved through methods such as optimization of materials and pore structures, as the inherent damping perfor-mance of single type metal materials is limited, and the traditional pore-making methods have shortcomings such as uneven distribution of pores, uncontrollable size and number. Current researches on the damping capacity of porous metal materials are concentrated in the material composition optimization and the pore structure controlling. High damping alloys and reinforcement phases with prefabricated hollow structures are applied in porous metal materials to optimize the material composition, and new processes such as etching and selective laser melting are adopted to improve the uniformity and controllability of the size and distribution of the pore structure. These methods have effectively improved the damping capacity of porous metal materials. For example, the loss factors of carbon nanotube reinforced porous aluminum alloy materials are 0.26 and 0.36 at 25—200 ℃ and higher than 390 ℃, respectively, which are 1.77 and 2.71 times of porous aluminum alloys, respectively.
In this review, the research progress of damping mechanism and performances of porous metal materials are introduced and summarized from the aspects of material type of matrix and reinforcement phases, and effect of pore structures, with the aim of providing more valuable ideas for the development of structural and functional integration of porous metal materials.
Key words:  porous material    metal    hollow sphere    damping performance
出版日期:  2023-08-10      发布日期:  2023-08-07
ZTFLH:  TB331  
基金资助: 国家自然科学基金项目(11972128);中核集团领创科研项目(KY90200210015)
通讯作者:  * 果春焕,哈尔滨工程大学材料科学与化学工程学院副教授、博士研究生导师。在Materials Science & Engineering A、Composite Structures、Ultrasonics Sonochemistry等期刊发表论文90余篇,其中SCI论文60余篇,授权发明专利10余项。目前主要从事轻质高强金属基复合材料制备与性能、先进材料成形制造、先进材料动态力学行为等方面的研究。guochunhuan@hrbeu.edu.cn   
作者简介:  秦若男,2018年6月于南京航空航天大学获得工学学士学位,2018年9月起就读于哈尔滨工程大学,现为哈尔滨工程大学材料科学与化学工程学院博士研究生。目前主要研究方向为金属空心球增强铝基复合材料。
引用本文:    
秦若男, 果春焕, 李艳春, 邵帅齐, 姜风春. 多孔金属材料阻尼性能的研究进展[J]. 材料导报, 2023, 37(15): 21100001-10.
QIN Ruonan, GUO Chunhuan, LI Yanchun, SHAO Shuaiqi, JIANG Fengchun. Research Progress in Damping Performances of Porous Metal Materials. Materials Reports, 2023, 37(15): 21100001-10.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21100001  或          http://www.mater-rep.com/CN/Y2023/V37/I15/21100001
1 Li X D. Study on viscoelastic damping material and damping property of rectangular bosses constrained damping structure. Master's Thesis, Qingdao University of Technology, China, 2018 (in Chinese).
李向东. 粘弹性阻尼材料及矩形凸台异型约束阻尼结构阻尼性能研究. 硕士学位论文, 青岛理工大学, 2018.
2 Sun Q J, Fan Z D, Mi Z A, et al. Silicone Material, 2005, 19(6), 13 (in Chinese).
孙全吉, 范召东, 米志安, 等. 有机硅材料, 2005, 19(6), 13.
3 Zhao Y Z. Research on damping property and damping micromechanism of high damping Zn-27Al alloy. Ph. D. Thesis, Southwest Jiaotong University, 2004 (in Chinese).
赵玉珍. 高阻尼Zn-27Al合金阻尼特性及机理研究. 博士学位论文, 西南交通大学, 2004.
4 Zheng C Q, Cheng X N. Journal of Experimental Mechanics, 2004, 19(2), 248 (in Chinese).
郑成琪, 程晓农. 实验力学, 2004, 19(2), 248.
5 Zhang Z M, Liu H Z, Wang J C, et al. Journal of Functional Materials, 2001, 32(3), 227 (in Chinese).
张忠明, 刘宏昭, 王锦程, 等. 功能材料, 2001, 32(3), 227.
6 Yin S J, Rayess N. Procedia Materials Science, 2014, 4, 311.
7 Ashby M F, Evans A G, Fleck N A, et al. Metal foams, Butterworth-Heinemann Press, US, 2000, pp. 46.
8 Gu J, Wu G H. Materials Reports, 2006, 20(12), 53 (in Chinese).
顾健, 武高辉. 材料导报, 2006, 20(12), 53.
9 Wang Z Y, Yang L S. Development and Application of Materials, 2004, 19(3), 38 (in Chinese).
王志远, 杨留栓. 材料开发与应用, 2004, 19(3), 38.
10 Wang J F, Wei W W, Pan F S, et al. Materials Reports, 2009, 23(7), 15 (in Chinese).
王敬丰, 魏文文, 潘复生, 等. 材料导报, 2009, 23(7), 15.
11 Yang L S, Sha Q Y, Liu Y M, et al. Special Casting & Nonferrous Alloys, 1999(S1), 57 (in Chinese).
杨留栓, 沙全友, 刘亚民, 等. 特种铸造及有色合金, 1999(S1), 57.
12 Song G Y, Mu L. Noise and Vibration Control, 2010, 30(4), 97 (in Chinese).
宋国旸, 穆龙. 噪声与振动控制, 2010, 30(4), 97.
13 Siva P D, Shoba C. Journal of Materials Research and Technology, 2016, 5(2), 123.
14 Zhang X Q, Liao L H, Ma N H, et al. Composites Part A:Applied Science and Manufacturing, 2006, 37(11), 2011.
15 Ni N N, Wen Y F, He D L, et al. Journal of Materials Engineering, 2015, 43(6), 90 (in Chinese).
倪楠楠, 温月芳, 贺德龙, 等. 材料工程, 2015, 43(6), 90.
16 Wang H Q, Jiang Z G, Huang L, et al. Polymer Bulletin, 2006(3), 24 (in Chinese).
王海侨, 姜志国, 黄丽, 等. 高分子通报, 2006(3), 24.
17 Köhl M, Bram M, Moser A, et al. Materials Science and Engineering:A, 2011, 528(6), 2454.
18 Wei L S, Zhang X X, Geng L. Vacuum, 2019, 162, 15.
19 Zhang X X, Wei L S. Journal of the Mechanical Behavior of Biomedical Materials, 2019, 96, 108.
20 Li H, Yuan B, Gao Y, et al. Journal of Alloys and Compounds, 2019, 773, 940.
21 Li H, Yuan B, Gao Y. Journal of Alloys and Compounds, 2018, 767, 690.
22 Wang Q, Wang L W, Kang J, et al. Journal of Materials Research and Technology, 2020, 9(4), 7020.
23 Guo W, Kato H. Materials Letters, 2015, 158, 1.
24 Zhao M, Shao Y M, Zheng W J, et al. Journal of Alloys and Compounds, 2021, 855, 157471.
25 Xie C C, Li H, Yuan B, et al. ACS Applied Materials Interfaces, 2019, 11(31), 28043.
26 Rajaei M, Hossein E S, Asefi A. Structures, 2020, 27, 1380.
27 Golovin I S, Sinning H R, Arhipov I K, et al. Materials Science and Engineering:A, 2004, 370, 531.
28 Li Q Y, Jiang G F, Dong J, et al. Journal of Alloys and Compounds, 2016, 680, 522.
29 Yu S R, Liu J A, Luo Y H, et al. Materials Science and Engineering:A, 2007, 457, 325.
30 Yang K M, Yang X D, He C N, et al. Materials Letters, 2017, 209, 68.
31 Wu J J, Li C G, Wang D B, et al. Composites Science and Technology, 2003, 63, 569.
32 Zhou G F, Jiang H J, Liu C Y, et al. Materials Letters, 2021, 300, 130162.
33 Zhou Y, Liu A N, Xu Y X, et al. Thin-Walled Structures, 2021, 160, 107372.
34 Zhang Y, Zhao Y Y. Materialia, 2019, 6, 100286.
35 Goletti M, Mussi V, Rossi A, et al. Procedia Materials Science, 2014, 4, 233.
36 Guo X N, Zhang J D, Zhu S J, et al. Thin-Walled Structures, 2021, 164, 107822.
37 Schäfer I, Mlikota M, Schmauder S, et al. Computational Materials Science, 2020, 183, 109801.
38 Mayama T, Tane M, Tadano Y. Acta Materialia, 2019, 165, 62.
39 Rosa F, Manzoni S, Casati R. Materials & Design, 2018, 160, 1010.
40 Mu Y L, Yao G C, Luo H J. Materials & Design, 2010, 31, 1007.
41 Yu X Q, He D. Journal of Functional Materials, 1996, 27(2), 76 (in Chinese).
余兴泉, 何德. 功能材料, 1996, 27(2), 76.
42 Sha Q Y. Preparation method, damping and mechanical properties of ZA27 foam metal matrix composites. Master's Thesis, Henan University of Science and Technology, China, 1999 (in Chinese).
沙全友. ZA27泡沫金属基复合材料的制备工艺及阻尼和力学性能研究. 硕士学位论文, 河南科技大学, 1999.
43 Liu S B. Experimental study on mechanical behaviors of aluminum foam composites and their application in seismic energy dissipation. Ph. D. Thesis, Southeast University, China, 2018 (in Chinese).
刘少波. 泡沫铝复合材料的力学性能及减震应用试验研究. 博士学位论文, 东南大学, 2018.
44 Cops M J, McDaniel J G, Magliula E A, et al. Applied Acoustics, 2020, 160, 107138.
45 Zheng N, Wang Q Z, Cui C X, et al. Physica B:Condensed Matter, 2020, 582, 411911.
46 Mu Y L, Yao G C, Luo H J. Materials & Design, 2010, 31, 610.
47 Xie Z K, Tane M, Hyun S, et al. Materials Science and Engineering:A, 2006, 417, 129.
48 Guo W, Kato H. Materials & Design, 2015, 78, 74.
49 Licitra L, Luong D D, Strbik III O M, et al. Materials & Design, 2015, 66, 504.
50 Katona B, Szlancsik A, Tábi T, et al. Materials Science and Enginee-ring:A, 2019, 739, 140.
51 Chen M C. Preparation and damping properties of 316L stainless steel hollow spheres/aluminum matrix composite. Master's Thesis, Harbin Engineering University, China, 2021 (in Chinese).
陈牧川. 316L不锈钢空心球/铝基复合材料制备及其阻尼性能研究. 硕士学位论文, 哈尔滨工程大学, 2021.
52 Ma Y H, Zhang Q C, Zhang D Y, et al. Acta Materialia, 2015, 96, 89.
53 Cao F L, Bai H B, Li D W, et al. Rare Metal Materials and Engineering, 2016, 45(1), 1.
54 Xue X, Yang P, Shao Y C, et al. International Journal of Lightweight Materials and Manufacture, 2020, 3, 88.
55 Ma Y H, Zhang Q C, Wang Y F, et al. Materials & Design, 2019, 181, 108067.
56 Tang X P, Meng Q L, Feng H. Journal of Southwest University of Science and Technology, 2016, 31(3), 59 (in Chinese).
唐显鹏, 孟庆利, 冯浩. 西南科技大学学报, 2016, 31(3), 59.
57 Yang P, Bai H B, Xue X, et al. Mechanical Systems and Signal Processing, 2019, 132, 622.
58 Zhang B, Ren Z Y, Bai H B, et al. Journal of Vibration and Shock, 2021, 40(4), 243 (in Chinese).
张彬, 任志英, 白鸿柏, 等. 振动与冲击, 2021, 40(4), 243.
59 Qiao J C, Xi Z P, Tang H P, et al. Rare Metal Materials and Engineering, 2008, 37(12), 2173 (in Chinese).
乔吉超, 奚正平, 汤慧萍, 等. 稀有金属材料与工程, 2008, 37(12), 2173.
60 Liu S F, Liu Q M, Tang H P, et al. Materials Reports, 2014, 28(20), 122 (in Chinese).
刘世锋, 刘全明, 汤慧萍, 等. 材料导报, 2014, 28(20), 122.
61 Wang Y J, Zhang Z J, Xue X M, et al. Thin-Walled Structures, 2020, 154, 106816.
62 Wang D T, Zhang W X, Huang X C. Noise and Vibration Control, 2020, 40(5), 259 (in Chinese).
王东涛, 张伟祥, 黄修长. 噪声与振动控制, 2020, 40(5), 259.
63 Liu K L, Chen C X, Guo W B, et al. Materials Science and Engineering:A, 2022, 832, 142470.
[1] 周爱玲, 贾爱忠, 赵新强, 王延吉. 污水重金属离子选择性吸附的研究进展[J]. 材料导报, 2023, 37(9): 21110052-10.
[2] 杨旭, 历新宇, 周娟苹, 姜男哲. 含重金属离子废水处理技术研究进展[J]. 材料导报, 2023, 37(9): 21090197-10.
[3] 刘震, 尹育航, 敬臣, 武美玲, 陶洪亮, 程彦强. 磨粒有序分布对金刚石锯片切割性能的影响[J]. 材料导报, 2023, 37(8): 21070268-5.
[4] 陈磊, 徐荣正, 张利, 刘亚光, 李正坤, 张海峰, 张波. Zr基非晶夹层对Al/TA1异种金属电子束焊接头组织和性能的影响[J]. 材料导报, 2023, 37(8): 21100079-4.
[5] 张喜庆, 滕莹雪, 郭菁. 元胞自动机在金属材料腐蚀研究中的应用[J]. 材料导报, 2023, 37(8): 21050078-11.
[6] 王歆銘, 马晓宇, 崔素萍, 王剑锋, 王亚丽, 马骥堃. 钢渣内部金属氧化物调控提高干法脱硫性能研究[J]. 材料导报, 2023, 37(8): 21090022-4.
[7] 余裕森, 黎氏琼春, 王天, 张利波. 有机酸在超声作用下对废FCC催化剂中有害金属脱除的影响[J]. 材料导报, 2023, 37(8): 21070229-8.
[8] 李水源, 徐镇宇, 李克, 周奎. 金属阳离子掺杂对羟基磷灰石微球性能的影响[J]. 材料导报, 2023, 37(7): 20100280-7.
[9] 郑伍魁, 赵丹, 朱毅, 张静洁, 杨雨玄, 王飞, 崔添, 李辉. 陶粒工程应用的趋势分析及研究进展[J]. 材料导报, 2023, 37(7): 21120251-12.
[10] 孙滢斐, 张攀, 胡敬平, 杨家宽, 侯慧杰. 地聚物在重金属铅固化中的研究进展[J]. 材料导报, 2023, 37(7): 21080091-7.
[11] 赵云松, 张迈, 戴建伟, 郭会明, 孙志军, 郭媛媛, 张剑, 花银群, 霍坤, 戴峰泽. 航空发动机涡轮叶片热障涂层研究进展[J]. 材料导报, 2023, 37(6): 21040168-7.
[12] 张曦挚, 崔红, 胡杨, 邓红兵. 利用等离子喷涂制备C/C复合材料表面耐烧蚀抗氧化涂层的研究进展[J]. 材料导报, 2023, 37(6): 21050162-7.
[13] 张化福, 周爱萍, 吴志明, 蒋亚东. 二氧化钒金属-绝缘相变的回线宽度及其调控研究进展[J]. 材料导报, 2023, 37(6): 21050100-10.
[14] 王嘉乐, 左雨欣, 王越锋, 陈洪立, 刘宜胜, 胡雨倞, 于影, 左春柽. ZnO@PAN抗腐蚀薄膜的制备、力学性能分析及在铝-空气电池中的应用研究[J]. 材料导报, 2023, 37(6): 21080088-6.
[15] 包亚晴, 黄李金鸿, 李新冬, 黄彪林, 黄万抚. PDA夹层调控的荷正电纳滤膜的制备及在水处理中的应用[J]. 材料导报, 2023, 37(6): 21090216-8.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed