Research Progress in Damping Performances of Porous Metal Materials
QIN Ruonan1, GUO Chunhuan1,*, LI Yanchun2, SHAO Shuaiqi1, JIANG Fengchun1,3
1 College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China 2 Institute of Advanced Technology, Heilongjiang Academy of Sciences, Harbin 150020, China 3 Yantai Research Institute of Harbin Engineering University, Yantai 264000, China
Abstract: Damping technology has always attracted much attention in industrial production, technological development and application. The damping capacities of materials used in damping technology have been demanded severely with the development of industrial technology. Therefore, the researches of damping materials focus on the structural and functional integration materials in order to meet the demand of damping perfor-mance of materials in industrial development. Porous metal materials that were developed rapidly in recent years, are one of the structural-functional integrated materials with broad application prospects. The damping performances of porous metal materials include material damping and structural damping. Therefore, the damping capacity of po-rous metal materials can be improved through methods such as optimization of materials and pore structures, as the inherent damping perfor-mance of single type metal materials is limited, and the traditional pore-making methods have shortcomings such as uneven distribution of pores, uncontrollable size and number. Current researches on the damping capacity of porous metal materials are concentrated in the material composition optimization and the pore structure controlling. High damping alloys and reinforcement phases with prefabricated hollow structures are applied in porous metal materials to optimize the material composition, and new processes such as etching and selective laser melting are adopted to improve the uniformity and controllability of the size and distribution of the pore structure. These methods have effectively improved the damping capacity of porous metal materials. For example, the loss factors of carbon nanotube reinforced porous aluminum alloy materials are 0.26 and 0.36 at 25—200 ℃ and higher than 390 ℃, respectively, which are 1.77 and 2.71 times of porous aluminum alloys, respectively. In this review, the research progress of damping mechanism and performances of porous metal materials are introduced and summarized from the aspects of material type of matrix and reinforcement phases, and effect of pore structures, with the aim of providing more valuable ideas for the development of structural and functional integration of porous metal materials.
1 Li X D. Study on viscoelastic damping material and damping property of rectangular bosses constrained damping structure. Master's Thesis, Qingdao University of Technology, China, 2018 (in Chinese). 李向东. 粘弹性阻尼材料及矩形凸台异型约束阻尼结构阻尼性能研究. 硕士学位论文, 青岛理工大学, 2018. 2 Sun Q J, Fan Z D, Mi Z A, et al. Silicone Material, 2005, 19(6), 13 (in Chinese). 孙全吉, 范召东, 米志安, 等. 有机硅材料, 2005, 19(6), 13. 3 Zhao Y Z. Research on damping property and damping micromechanism of high damping Zn-27Al alloy. Ph. D. Thesis, Southwest Jiaotong University, 2004 (in Chinese). 赵玉珍. 高阻尼Zn-27Al合金阻尼特性及机理研究. 博士学位论文, 西南交通大学, 2004. 4 Zheng C Q, Cheng X N. Journal of Experimental Mechanics, 2004, 19(2), 248 (in Chinese). 郑成琪, 程晓农. 实验力学, 2004, 19(2), 248. 5 Zhang Z M, Liu H Z, Wang J C, et al. Journal of Functional Materials, 2001, 32(3), 227 (in Chinese). 张忠明, 刘宏昭, 王锦程, 等. 功能材料, 2001, 32(3), 227. 6 Yin S J, Rayess N. Procedia Materials Science, 2014, 4, 311. 7 Ashby M F, Evans A G, Fleck N A, et al. Metal foams, Butterworth-Heinemann Press, US, 2000, pp. 46. 8 Gu J, Wu G H. Materials Reports, 2006, 20(12), 53 (in Chinese). 顾健, 武高辉. 材料导报, 2006, 20(12), 53. 9 Wang Z Y, Yang L S. Development and Application of Materials, 2004, 19(3), 38 (in Chinese). 王志远, 杨留栓. 材料开发与应用, 2004, 19(3), 38. 10 Wang J F, Wei W W, Pan F S, et al. Materials Reports, 2009, 23(7), 15 (in Chinese). 王敬丰, 魏文文, 潘复生, 等. 材料导报, 2009, 23(7), 15. 11 Yang L S, Sha Q Y, Liu Y M, et al. Special Casting & Nonferrous Alloys, 1999(S1), 57 (in Chinese). 杨留栓, 沙全友, 刘亚民, 等. 特种铸造及有色合金, 1999(S1), 57. 12 Song G Y, Mu L. Noise and Vibration Control, 2010, 30(4), 97 (in Chinese). 宋国旸, 穆龙. 噪声与振动控制, 2010, 30(4), 97. 13 Siva P D, Shoba C. Journal of Materials Research and Technology, 2016, 5(2), 123. 14 Zhang X Q, Liao L H, Ma N H, et al. Composites Part A:Applied Science and Manufacturing, 2006, 37(11), 2011. 15 Ni N N, Wen Y F, He D L, et al. Journal of Materials Engineering, 2015, 43(6), 90 (in Chinese). 倪楠楠, 温月芳, 贺德龙, 等. 材料工程, 2015, 43(6), 90. 16 Wang H Q, Jiang Z G, Huang L, et al. Polymer Bulletin, 2006(3), 24 (in Chinese). 王海侨, 姜志国, 黄丽, 等. 高分子通报, 2006(3), 24. 17 Köhl M, Bram M, Moser A, et al. Materials Science and Engineering:A, 2011, 528(6), 2454. 18 Wei L S, Zhang X X, Geng L. Vacuum, 2019, 162, 15. 19 Zhang X X, Wei L S. Journal of the Mechanical Behavior of Biomedical Materials, 2019, 96, 108. 20 Li H, Yuan B, Gao Y, et al. Journal of Alloys and Compounds, 2019, 773, 940. 21 Li H, Yuan B, Gao Y. Journal of Alloys and Compounds, 2018, 767, 690. 22 Wang Q, Wang L W, Kang J, et al. Journal of Materials Research and Technology, 2020, 9(4), 7020. 23 Guo W, Kato H. Materials Letters, 2015, 158, 1. 24 Zhao M, Shao Y M, Zheng W J, et al. Journal of Alloys and Compounds, 2021, 855, 157471. 25 Xie C C, Li H, Yuan B, et al. ACS Applied Materials Interfaces, 2019, 11(31), 28043. 26 Rajaei M, Hossein E S, Asefi A. Structures, 2020, 27, 1380. 27 Golovin I S, Sinning H R, Arhipov I K, et al. Materials Science and Engineering:A, 2004, 370, 531. 28 Li Q Y, Jiang G F, Dong J, et al. Journal of Alloys and Compounds, 2016, 680, 522. 29 Yu S R, Liu J A, Luo Y H, et al. Materials Science and Engineering:A, 2007, 457, 325. 30 Yang K M, Yang X D, He C N, et al. Materials Letters, 2017, 209, 68. 31 Wu J J, Li C G, Wang D B, et al. Composites Science and Technology, 2003, 63, 569. 32 Zhou G F, Jiang H J, Liu C Y, et al. Materials Letters, 2021, 300, 130162. 33 Zhou Y, Liu A N, Xu Y X, et al. Thin-Walled Structures, 2021, 160, 107372. 34 Zhang Y, Zhao Y Y. Materialia, 2019, 6, 100286. 35 Goletti M, Mussi V, Rossi A, et al. Procedia Materials Science, 2014, 4, 233. 36 Guo X N, Zhang J D, Zhu S J, et al. Thin-Walled Structures, 2021, 164, 107822. 37 Schäfer I, Mlikota M, Schmauder S, et al. Computational Materials Science, 2020, 183, 109801. 38 Mayama T, Tane M, Tadano Y. Acta Materialia, 2019, 165, 62. 39 Rosa F, Manzoni S, Casati R. Materials & Design, 2018, 160, 1010. 40 Mu Y L, Yao G C, Luo H J. Materials & Design, 2010, 31, 1007. 41 Yu X Q, He D. Journal of Functional Materials, 1996, 27(2), 76 (in Chinese). 余兴泉, 何德. 功能材料, 1996, 27(2), 76. 42 Sha Q Y. Preparation method, damping and mechanical properties of ZA27 foam metal matrix composites. Master's Thesis, Henan University of Science and Technology, China, 1999 (in Chinese). 沙全友. ZA27泡沫金属基复合材料的制备工艺及阻尼和力学性能研究. 硕士学位论文, 河南科技大学, 1999. 43 Liu S B. Experimental study on mechanical behaviors of aluminum foam composites and their application in seismic energy dissipation. Ph. D. Thesis, Southeast University, China, 2018 (in Chinese). 刘少波. 泡沫铝复合材料的力学性能及减震应用试验研究. 博士学位论文, 东南大学, 2018. 44 Cops M J, McDaniel J G, Magliula E A, et al. Applied Acoustics, 2020, 160, 107138. 45 Zheng N, Wang Q Z, Cui C X, et al. Physica B:Condensed Matter, 2020, 582, 411911. 46 Mu Y L, Yao G C, Luo H J. Materials & Design, 2010, 31, 610. 47 Xie Z K, Tane M, Hyun S, et al. Materials Science and Engineering:A, 2006, 417, 129. 48 Guo W, Kato H. Materials & Design, 2015, 78, 74. 49 Licitra L, Luong D D, Strbik III O M, et al. Materials & Design, 2015, 66, 504. 50 Katona B, Szlancsik A, Tábi T, et al. Materials Science and Enginee-ring:A, 2019, 739, 140. 51 Chen M C. Preparation and damping properties of 316L stainless steel hollow spheres/aluminum matrix composite. Master's Thesis, Harbin Engineering University, China, 2021 (in Chinese). 陈牧川. 316L不锈钢空心球/铝基复合材料制备及其阻尼性能研究. 硕士学位论文, 哈尔滨工程大学, 2021. 52 Ma Y H, Zhang Q C, Zhang D Y, et al. Acta Materialia, 2015, 96, 89. 53 Cao F L, Bai H B, Li D W, et al. Rare Metal Materials and Engineering, 2016, 45(1), 1. 54 Xue X, Yang P, Shao Y C, et al. International Journal of Lightweight Materials and Manufacture, 2020, 3, 88. 55 Ma Y H, Zhang Q C, Wang Y F, et al. Materials & Design, 2019, 181, 108067. 56 Tang X P, Meng Q L, Feng H. Journal of Southwest University of Science and Technology, 2016, 31(3), 59 (in Chinese). 唐显鹏, 孟庆利, 冯浩. 西南科技大学学报, 2016, 31(3), 59. 57 Yang P, Bai H B, Xue X, et al. Mechanical Systems and Signal Processing, 2019, 132, 622. 58 Zhang B, Ren Z Y, Bai H B, et al. Journal of Vibration and Shock, 2021, 40(4), 243 (in Chinese). 张彬, 任志英, 白鸿柏, 等. 振动与冲击, 2021, 40(4), 243. 59 Qiao J C, Xi Z P, Tang H P, et al. Rare Metal Materials and Engineering, 2008, 37(12), 2173 (in Chinese). 乔吉超, 奚正平, 汤慧萍, 等. 稀有金属材料与工程, 2008, 37(12), 2173. 60 Liu S F, Liu Q M, Tang H P, et al. Materials Reports, 2014, 28(20), 122 (in Chinese). 刘世锋, 刘全明, 汤慧萍, 等. 材料导报, 2014, 28(20), 122. 61 Wang Y J, Zhang Z J, Xue X M, et al. Thin-Walled Structures, 2020, 154, 106816. 62 Wang D T, Zhang W X, Huang X C. Noise and Vibration Control, 2020, 40(5), 259 (in Chinese). 王东涛, 张伟祥, 黄修长. 噪声与振动控制, 2020, 40(5), 259. 63 Liu K L, Chen C X, Guo W B, et al. Materials Science and Engineering:A, 2022, 832, 142470.