Please wait a minute...
材料导报  2023, Vol. 37 Issue (10): 21060009-7    https://doi.org/10.11896/cldb.21060009
  高分子与聚合物基复合材料 |
热塑性聚氨酯改性环氧树脂的制备与微观特性表征
宋承哲, 张冠华*, 屈丰来, 冯良勇
辽宁省交通规划设计院有限责任公司,沈阳 110111
Preparation and Microstructure Characterization of Thermoplastic Polyurethane Modified Epoxy Resin
SONG Chengzhe, ZHANG Guanhua*, QU Fenglai, FENG Liangyong
Liaoning Provincial Transportation Planning and Design Institute Co., Ltd., Shenyang 110111, China
下载:  全 文 ( PDF ) ( 5689KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为了获得一种柔性环氧树脂,选用聚四氢呋喃醚二醇(PTMEG)和二苯基甲烷二异氰酸酯(MDI)制得的热塑性聚氨酯弹性体(TPU)预聚体对E-51型环氧树脂(EP)进行改性,通过拉伸强度、断裂伸长率和弯曲强度等力学性能测试方法得到聚氨酯改性环氧树脂中环氧树脂、TPU预聚体和固化剂的最佳掺配比例。借助红外光谱(FTIR)、差示扫描量热仪(DSC)、热失重(TG)与扫描电镜(SEM)表征聚氨酯改性环氧树脂的微观特性。结果表明:当聚氨酯预聚体改性EP的适宜反应温度为80 ℃、聚氨酯预聚体的掺量为20%、A和B组分的最优掺配比例为2∶1时,改性体系的力学性能最佳,表干时间为3.5 h,完全干燥时间为9 h,抗拉强度为53.1 MPa,断裂伸长率为153.34%,弯曲强度为48.14 MPa,弯曲变形为13.61 mm,黏结强度为1.89 MPa,T5%T10%分别为386.4 ℃、437.2 ℃,玻璃化转变温度为-27.9 ℃。通过FTIR与SEM对其改性机理进行分析发现,聚氨酯改性EP达到提高材料韧性的效果,且改性过程属于化学改性范畴。本研究可为合理地选择环氧树脂的聚氨酯改性剂提供一定的理论基础。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
宋承哲
张冠华
屈丰来
冯良勇
关键词:  环氧树脂  热塑性聚氨酯弹性体  力学性能  热性能  改性机理    
Abstract: In order to obtain a flexible epoxy resin, a thermoplastic polyurethane elastomer (TPU) prepolymer prepared by polytetrahydrofuran ether diol (PTMEG) and diphenylmethane diisocyanate (MDI) was used to modify epoxy resin (E-51). The optimal mixing ratio of epoxy resin, TPU prepolymer and curing agent in polyurethane modified epoxy resin was obtained by testing mechanical properties such as tensile strength, elongation at break and bending strength. Microscopic properties of polyurethane modified epoxy resin were characterized by infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), thermogravimetry (TG) and scanning electron microscopy (SEM). The results showed that when the optimum reaction temperature of polyurethane prepolymer modified EP was 80 ℃, the content of polyurethane prepolymer was 20%, and the optimal mixing scheme of A and B components was 2∶1, the mechanical properties of the modified EP system was the best. Modified EP with surface drying time was 3.5 h, complete drying time was 9 h, tensile strength was 53.1 MPa, elongation at break was 153.34%, bending strength was 48.14 MPa, bending deformation was 13.61 mm, bonding strength was 1.89 MPa, T5% and T10% were 386.4 ℃ and 437.2 ℃, respectively, glass transition temperature was -27.9 ℃. The modification mechanism of polyurethane EP was analyzed by FTIR and SEM. It was found that the modification of polyurethane EP achieved the desired effect, and the process belonged to the category of chemical modification. This study can provide a theoretical basis for the reasonable selection of polyurethane modifier for epoxy resin.
Key words:  epoxy resin    thermoplastic polyurethane elastomer    mechanical property    thermal property    modification mechanism
出版日期:  2023-05-25      发布日期:  2023-05-23
ZTFLH:  U414  
基金资助: 辽宁省交通科技项目(201915)
通讯作者:  *张冠华,教授级高级工程师。1996年7月毕业于湖南大学,获得学士学位;2003年11月毕业于大连理工大学,获得硕士学位;2012年9月毕业于同济大学,获得博士学位。主要从事桥梁工程和公路桥梁养护技术的研究工作。发表论文近60篇(EI检索10篇),出版著作1部。lnzgh123@163.com   
作者简介:  宋承哲,副高级工程师,2012年6月毕业于吉林大学,获得学士学位,2014年7月毕业于哈尔滨工业大学,获得硕士学位。主要研究领域为桥梁耐久性提升技术。发表论文近10篇,其中SCI检索2篇、EI检索1篇,出版专著2部。
引用本文:    
宋承哲, 张冠华, 屈丰来, 冯良勇. 热塑性聚氨酯改性环氧树脂的制备与微观特性表征[J]. 材料导报, 2023, 37(10): 21060009-7.
SONG Chengzhe, ZHANG Guanhua, QU Fenglai, FENG Liangyong. Preparation and Microstructure Characterization of Thermoplastic Polyurethane Modified Epoxy Resin. Materials Reports, 2023, 37(10): 21060009-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21060009  或          http://www.mater-rep.com/CN/Y2023/V37/I10/21060009
1 Wang P P, Tian X G, Zhang R, et al. Journal of Materials in Civil Engineering, 2021, 33(8), 1.
2 Chen Y, Wu X B, Tan X M, et al. China Adhesives, 2021, 30(4), 236 (in Chinese).
陈勇, 吴喜兵, 谭晓明, 等. 中国胶粘剂, 2021, 30(4), 236.
3 Li X, Lei B. China Adhesives, 2021, 30(4), 270 (in Chinese).
李兴, 雷斌. 中国胶粘剂, 2021, 30(4), 270.
4 Mueller M, Valasek P. The International Journal of Electrical Enginee-ring & Education, 2018, 505, 554.
5 Shariati M, Farzi G, Dadrasi A. Construction and Building Materials, 2015, 78, 362.
6 Rafal J, Michal D, Marek N, et al. Industrial & Engineering Chemistry Research, 2021, 60(5), 2178.
7 Li H L, Li T, Qi X H, et al. Polymer Materials Science and Enginee-ring, 2020(7), 15 (in Chinese).
李会录, 李涛, 祁向花, 等. 高分子材料科学与工程, 2020(7), 15.
8 Zhang Y Y, Wei J J, Kong L, et al. New Chemical Materials, 2021, 49(11), 1(in Chinese).
张艺媛, 魏建军, 孔林, 等. 化工新型材料, 2021, 49(11), 1.
9 Bahia H U, Anderson D A, Christensen D W. Association of Asphalt Pa-ving Technologists, 1992, 61, 117.
10 Zhou A J, Li C C, Li S G. China Syntehtic Fiber Industry, 2013, 36(2), 46 (in Chinese).
周爱军, 李长存, 黎树根. 合成纤维工业, 2013, 36(2), 46.
11 Merino D H, Driscoll B O, Harris P J, et al. Polymer Chemistry, 2018, 30(14), 4077.
12 Li W B, Zhou C, Cao C B, et al. Chinese Journal of Biomedical Engineering, 2011, 30(1), 130 (in Chinese).
李文波, 周晨, 曹成波, 等. 中国生物医学工程学报, 2011, 30(1), 130.
13 Liu Y J. Polyurethane industry(2nd Ed. ), Chemical Industry Press, China, 2012 (in Chinese).
刘益军. 聚氨酯工业(第二版), 化学工业出版社, 2012.
14 Liu H, Dong M Y, Huang W J, et al. Journal of Materials Chemsitry A, 2015, 17(5), 266.
15 Wang C, Xiao X, Lu Y, et al. Construction and Building Materials, 2019, 227(10), 1.
16 Li C Y, Gu Z Y, Liao H. China Adhesives, 2018, 27(11), 24 (in Chinese).
李翠影, 古忠云, 廖宏. 中国胶粘剂, 2018, 27(11), 24.
17 Jiangsu Zhonglu Engineering Technology Research Institute Co. , Ltd. . Technical guide for the treatment of colored polyurethane and modified epoxy resin surfaces on highway pavements, China Communications Press, China, 2018, pp.1 (in Chinese).
江苏中路工程技术研究院有限公司. 公路路面彩色聚氨酯及改性环氧树脂表面处治技术指南, 人民交通出版社, 2018, pp.1.
18 Allaoui A, Bai S, Cheng H M, et al. Composites Science and Technology, 2020, 62(15), 1993.
19 Seibold S, Schafer A, Lohstroh W, et al. Journal of Applied Polymer Science, 2008, 108(1), 264.
20 Ezquerra T A, Connor M T, Roy S, et al. Composite Science and Techno-logy, 2001, 61, 903.
21 Xiang Q, Xiao F P. Construction and Building Materials, 2020, 235, 2.
22 Cong P, Tian Y, Liu N, et al. Journal of Applied Polymer Science, 2016, 133(21), 321.
23 Kang Y, Song M, Pu L, et al. Construction and Building Materials, 2015, 76, 343.
24 Jiang L, Hu K, Liu Z, et al. Advances in Polymer Technology, 2018, 37(3), 830.
25 Liu Y, Zhang J, Jiang Y, et al. Construction and Building Materials, 2018, 165, 163.
[1] 刘海韬, 姜如, 孙逊, 陈晓菲, 马昕, 杨方. 多孔Al2O3f/Al2O3复合材料研究进展[J]. 材料导报, 2023, 37(9): 22070158-10.
[2] 孙睿, 邬兆杰, 王栋民, 丁源, 房奎圳. 超细镁渣微粉-水泥复合胶凝材料的性能及水化机理[J]. 材料导报, 2023, 37(9): 22060197-11.
[3] 胡海波, 朱丽慧, 涂有旺, 段元满, 吴晓春, 顾炳福. 深冷处理工艺对M2高速钢显微组织与性能的影响[J]. 材料导报, 2023, 37(9): 21110028-6.
[4] 鲁玉鑫, 卢林刚. 聚磷酸铵-单宁酸-三聚氰胺/环氧树脂复合材料的阻燃及力学性能[J]. 材料导报, 2023, 37(9): 21090236-8.
[5] 范雨生, 王茹. 纳米二氧化硅对丁苯共聚物/硫铝酸盐水泥复合砂浆物理力学性能的影响[J]. 材料导报, 2023, 37(9): 21080193-7.
[6] 张庆宇, 罗京, 赵毅, 刘英, 张新永. 微波加热集料的传热特性及其影响因素[J]. 材料导报, 2023, 37(8): 21110074-8.
[7] 陈磊, 徐荣正, 张利, 刘亚光, 李正坤, 张海峰, 张波. Zr基非晶夹层对Al/TA1异种金属电子束焊接头组织和性能的影响[J]. 材料导报, 2023, 37(8): 21100079-4.
[8] 张进, 谭璐, 邢宝岩, 李作鹏, 赵建国, 屈文山, 张璐. 环氧导电胶的反应动力学及其应用[J]. 材料导报, 2023, 37(8): 22020025-6.
[9] 刘勇, 刘哲, 高广志, 李志勇, 马凤森. 基于纳米材料的微针阵列技术及其应用[J]. 材料导报, 2023, 37(8): 21110160-10.
[10] 王梦浩, 王朝辉, 高璇, 高峰, 肖绪荡. 公路路面乳化沥青冷再生技术综述[J]. 材料导报, 2023, 37(7): 21080241-11.
[11] 程瑄, 桂晓露, 高古辉. 先进高强钢中的残余奥氏体:综述[J]. 材料导报, 2023, 37(7): 21070186-12.
[12] 乔丽学, 曹睿, 车洪艳, 李晌, 王铁军, 董浩, 王彩芹, 闫英杰. M390高碳马氏体不锈钢与304奥氏体不锈钢CMT对接焊连接机理[J]. 材料导报, 2023, 37(7): 21090294-6.
[13] 赵宇, 武喜凯, 朱伶俐, 杨章, 杨若凡, 管学茂. 碳纳米管对3D打印混凝土流变性能及力学性能的影响[J]. 材料导报, 2023, 37(6): 21080137-6.
[14] 刘文憬, 李元东, 宋赵熙, 毕广利, 杨昊坤, 曹杨婧. Sr+Er复合变质对AlSi10MnMg合金微观组织、导热及力学性能的影响[J]. 材料导报, 2023, 37(6): 21090239-7.
[15] 高志玉, 樊献金, 高思达, 薛维华. 基于多模型机器学习的合金结构钢回火力学性能研究[J]. 材料导报, 2023, 37(6): 21090025-7.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed