Please wait a minute...
材料导报  2021, Vol. 35 Issue (Z1): 274-278    
  无机非金属及其复合材料 |
工业固废制备透水砖及其孔结构研究进展
叶强
浙江天地环保科技有限公司,杭州 310000
Research Progress on the Preparation and Pore Structure Characteristics of Water-permeable Brick by Industrial Solid Waste
YE Qiang
Zhejiang Tiandi Environmental Protection Engineering Co., Ltd, Hangzhou 310000, China
下载:  全 文 ( PDF ) ( 3562KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 透水砖是一种新兴的路面砖,透水砖的铺设能够加强地表与地下水的交换,缓解城市的内涝灾害。近年来,出现了大量关于透水砖的制备及其使用特性等的相关研究。另一方面,随着工业化的不断发展,产生了大量的工业固体废弃物,如果处置不当,这些废弃物的堆存不仅占据大量宝贵的土地资源,还会给当地的土壤、大气及水环境带来极大的危害。而工业固废中包含大量的SiO2、Al2O3等无机非金属氧化物,这些非金属氧化物是砖体制备中所常见的成分。因而,将工业固废经过处理后生产透水砖,既能减轻工业固废对环境的危害,又能节约透水砖的生产成本,能够带来环保及经济双重效益。
目前已有大量利用工业固废制备环保透水砖的研究,但是由于工业固废种类繁多,特性不一,导致相关研究较为分散,亟需对这些研究的反应原理进行归纳总结,以便后续研究的深入进行。本文在阅读国内外有关工业固废制备环保透水砖的论文的基础上,从利用工业固废制备透水砖的原料特性、生产工艺、反应机理以及常用的表征方法等方面出发,总结了工业固废制备透水砖的研究进展。
透水砖的孔隙结构是影响透水砖强度及透水性的重要因素,通过对透水砖孔隙结构的研究,可以从原理上为透水砖的生产提供依据。因而,本文重点对透水砖的孔隙结构的分布类型、形成机理、表征方法及在孔结构研究基础上进一步利用数值模拟方法研究透水砖的渗透性的数值模拟方法进行了归纳与总结。
最后,基于目前工业固废制备环保透水砖及其孔结构的研究现状,总结了该领域的研究重点及发展前景。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
叶强
关键词:  工业固废  透水砖  孔结构  渗流模拟    
Abstract: Water-permeable bricks are a new type of pavement bricks. The laying of permeable bricks can strengthen the exchange between the surface and groundwater and alleviate waterlogging disasters in the city. In recent years, there has been lots of related research on the pre-paration and using characteristics of permeable bricks. On the other hand, with the continuous development of industrialization, a large amount of industrial solid waste has been produced. If improperly disposed of, these wastes will not only occupy a large amount of valuable land resources, but also do harm to the local soil, atmosphere as well as water environment. On the other side, industrial solid waste contains a large amount of inorganic nonmetallic oxides such as SiO2 and Al2O3, which are common components in the preparation of bricks. Therefore, producing permeable bricks use industrial solid waste can not only reduce the harm to environment, but also can save the production cost of permeable bricks, which can bring benefits both environmentally and economicly.
There have been a large number of studies on the use of industrial solid waste to prepare environmental friendly permeable bricks. However, due to the wide variety of industrial solid wastes and their different characteristics, related studies are relatively scattered. It is urgent to summarize the reaction principles of these studies for further research. Based on relative papers domestic and foreigners, this article summarizes the aspects of raw material characteristics, production process, reaction mechanism and characterization methods for preparing permeable bricks from industrial solid waste.
The pore structure of permeable bricks is an important factor affecting the strength and water permeability of permeable bricks. Research on the pore structure of permeable bricks can provide a basis for the production of permeable bricks. Therefore, this article focuses on the distribution type, formation mechanism, and characterization methods of the pore structure of permeable bricks, and numerical simulation methods to study the permeability of permeable bricks based on the study of pore structure.
Finally, based on the current research of environmental friendly permeable bricks made from industrial solid waste and their pore structure, the research focus and prospects of this field are summarized.
Key words:  industrial solid waste    water-permeable brick    pore structure    numerical simulation
                    发布日期:  2021-07-16
ZTFLH:  TU528.2  
基金资助: 国家重点研发计划(2017YFC0703103);浙江省能源集团项目(ZN-KJ-18-018)
通讯作者:  yeqiang1121@126.com   
作者简介:  叶强,高级工程师,毕业于浙江大学电力及自动化专业,就职于浙江天地环保科技股份有限公司。任华中科技大学固废处理及资源化工程联合研发中心副主任、浙江省能源集团二级专家。研究方向为火力发电厂粉煤灰、脱硫石膏等工业固废及有机废弃物资源化综合利用。持有《一种超细粉煤灰增强的丁苯橡胶及其制备方法》等5项发明专利,《畜禽粪污厌氧消化沼液热水解回用系统》等6项实用新型专利。曾获得中国电力科学技术三等奖,浙江电力科学技术一等奖等荣誉。
引用本文:    
叶强. 工业固废制备透水砖及其孔结构研究进展[J]. 材料导报, 2021, 35(Z1): 274-278.
YE Qiang. Research Progress on the Preparation and Pore Structure Characteristics of Water-permeable Brick by Industrial Solid Waste. Materials Reports, 2021, 35(Z1): 274-278.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2021/V35/IZ1/274
1 吴丹洁, 詹圣泽, 李友华,等. 中国软科学, 2016(1), 79.
2 Yao Z T, Ji X S, Sarker P K, et al.Earth-Science Reviews, 2015, 141, 105.
3 Wu X W, Ma H W, Wu N, et al.Environmental Progress & Sustainable Energy, 2016, 35,779.
4 Li Y, Ren Y, Pei D, et al.ISIJ International, 2019,59(9),1723.
5 吴建锋, 陈金桂, 徐晓虹,等. 武汉理工大学学报, 2009(19), 27.
6 Zhu M, Wang H, Liu L, et al.Construction and Building Materials, 2017, 148, 484.
7 Zhou C Q.Construction and Building Materials, 2018, 188, 850.
8 李国昌, 王萍. 金属矿山, 2009(12), 154.
9 Nishigaki M.Waste Management, 2000, 20, 185.
10 饶玲丽. 粉煤灰理化性质分析及粉煤灰透水砖的制备研究.硕士学位论文, 贵州大学, 2006.
11 王能健. 以高碳粉煤灰为基料制备烧结透水砖的试验研究. 硕士学位论文, 太原理工大学, 2018.
12 王奕仁, 王栋民. 材料导报, 2017, 31(17), 98.
13 Kumar S.Construction and Building Materials, 2002, 16, 519.
14 张艳娟, 张洪涛, 徐向舟等. 中国水土保持科学, 2010(8), 104.
15 徐柳, 叶海华. 天津科技, 2011(38), 57.
16 徐芬莲, 赵晚群, 卢佳林等.粉煤灰综合利用, 2013(6), 24.
17 李子成, 张爱菊, 刘良军.石家庄铁路职业技术学院学报, 2015(14), 1.
18 吴谦. 江西建材, 2017(24), 11.
19 Cai R, Chai J.Earth and Environmental Science, 2018, 113, 132.
20 袁汉卿, 蒋友宝, 崔玉理,等. 材料导报, 2018, 32(S2), 466.
21 范伟. 材料导报, 2017, 31(2), 413.
22 阮雪琴, 谷伟. 混凝土与水泥制品, 2017(1), 67.
23 Neithalath N, Sumanasooriya M, Deo O.Materials Characterization, 2010, 61(8), 802.
24 Neithalath N.Cement and Concrete Research, 2007, 37(5), 796.
25 Rasband W S.ImageJ: Image processing and analysis in Java. Astrophy-sics Source Code Library, 2012, 2, 378.
26 Liu C, Wu C, Ho H.Waste Management, 2006, 26, 970.
27 Raats P A C.Soil Science Society of America Journal, 1973, 37, 174.
28 Lian C, Zhuge Y, Beecham S.Construction and Building Materials, 2011, 25, 4294.
29 Zhong R, Wille K.Cement and Concrete Composites, 2016, 70, 130.
30 Zhong R, Xu M, Vieira N R, et al.Construction and Building Materials, 2016, 125, 1158.
31 Chandrappa A K, Biligiri K P.Materials and Structures, 2016, 49, 5255.
32 Neithalath N, Weiss J, Olek J.Cement and Concrete Research, 2006, 36, 2074.
33 Binwen T, Shuai G, Ya G W, et al.Construction and Building Materials, 2019, 208, 697.
34 王小虎, 彭宇, 吉克尼都,等. 硅酸盐学报, 2019(11),4.
35 Katz A J, Thompson A H.Physical Review B, 1986, 34, 8179.
36 Carman P C.Chemical Engineering Research and Design, 1997, 75, 150.
37 Padhan B, Nagesh M, Bhattacharjee B.Cement and Concrete Research, 2005, 35, 1724.
38 Gebart B R.Journal of Composite Materials, 1992, 26, 1100.
39 Koponen A, Kandhai D, Hellen E, et al.Physical Review Letters, 1998, 80, 716.
40 Herron M M.In:Spwla Logging Symposium. Society of Petrophysicists and Well-Log Analysts, 1987.
[1] 杨达, 卢明阳, 宋迪, 白书霞, 张国华, 胡秀颖, 庞来学. 地质聚合物水泥的研究进展[J]. 材料导报, 2021, 35(Z1): 644-649.
[2] 张金才, 王志英, 程芳琴. 固废基无机纤维的研究进展[J]. 材料导报, 2021, 35(7): 7019-7026.
[3] 马驰, 王连慧, 潘崇祥, 刘紫婷, 王娜, 史颖. 泡孔聚合物压电材料的研究进展[J]. 材料导报, 2021, 35(7): 7199-7204.
[4] 刘志勇, 夏溪芝, 陈威威, 张云升, 刘诚. 水泥基材料微结构演变及其传输性能的数值模拟[J]. 材料导报, 2021, 35(3): 3076-3084.
[5] 董龙瑞, 杭美艳, 周港明, 贾春, 徐俊伟. 洗罐车泥浆对混凝土性能的影响[J]. 材料导报, 2020, 34(Z2): 242-245.
[6] 李卿, 赵国瑞, 马文有, 余红雅, 刘敏. 选区激光熔化成形多孔Ti6Al4V (ELI)合金的拉伸性能及断裂机制[J]. 材料导报, 2020, 34(4): 4073-4076.
[7] 杨海涛, 段品佳, 吴瑞东, 刘娟红, 娄百川, 罗坤. 借助激光闪光法研究高强混凝土的低温热学性能[J]. 材料导报, 2020, 34(16): 16043-16048.
[8] 王昊, 李广忠, 葛渊, 刘波, 林黎蔚, 杨保军, 李亚宁, 荆鹏. 核聚变堆用氚增殖剂材料及其制备技术的研究进展与发展趋势[J]. 材料导报, 2020, 34(15): 15075-15082.
[9] 龚莉雯, 郑晓平, 吴志昂, 王璠, 杨子程, 张利, 包锦标. 微孔发泡聚碳酸酯-聚烯烃弹性体共混物[J]. 材料导报, 2020, 34(10): 10197-10200.
[10] 廖宜顺, 沈晴, 徐鹏飞, 廖国胜, 钟侚. 粉煤灰对水泥基材料水化过程电阻率的影响研究[J]. 材料导报, 2019, 33(8): 1335-1339.
[11] 王家滨, 牛荻涛. 硝酸侵蚀/冻融循环共同作用喷射混凝土耐久性能(I):物理力学性能及孔结构变化[J]. 材料导报, 2019, 33(8): 1340-1347.
[12] 薛翠真, 申爱琴, 郭寅川. 基于孔结构参数的掺CWCPM混凝土抗压强度预测模型的建立[J]. 材料导报, 2019, 33(8): 1348-1353.
[13] 张雄, 王啸夫. 若干因素对透水砖性能影响机理的研究进展[J]. 材料导报, 2019, 33(23): 3949-3954.
[14] 丁聪, 郭丽萍, 雷东移, 徐燕慧, 朱玉, 邓忠华. 轻质保温高延性水泥基复合材料的拉伸性能与耐久性能[J]. 材料导报, 2019, 33(10): 1652-1658.
[15] 朱学良, 魏智强, 白军善, 赵文华, 冯旺军, 姜金龙. 碳包覆氧化亚钴纳米颗粒的制备与性能研究[J]. 《材料导报》期刊社, 2018, 32(4): 621-625.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[3] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[4] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[5] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[6] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[7] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[8] JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes[J]. Materials Reports, 2017, 31(22): 10 -14 .
[9] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[10] ZHOU Dianwu, HE Rong, LIU Jinshui, PENG Ping. Effects of Ge, Si Addition on Energy and Electronic Structure of ZrO2 and Zr(Fe,Cr)2[J]. Materials Reports, 2017, 31(22): 146 -152 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed