Please wait a minute...
材料导报  2021, Vol. 35 Issue (Z1): 279-283    
  无机非金属及其复合材料 |
Si-Mn矿粉粒度对复合胶凝体系水化机理和力学性能的影响
周祥1,2, 赵华堂2,3, 李亮1,2, 杜浪1,2, 周双福1,2, 邵瞾1,2, 张晓敏1,2
1 成都产品质量检验研究院有限责任公司,成都 610100
2 国家建材产品质量监督检验中心(四川),成都 610100
3 四川省产品质量监督检验检测院,成都 610100
Effect of Particle Size of Si-Mn Slag on Hydraulic Mechanism and Mechanical Property in Composite Cementitious System
ZHOU Xiang1,2, ZHAO Huatang2,3, LI Liang1,2, DU Lang1,2, ZHOU Shuangfu1,2, SHAO Zhao1,2, ZHANG Xiaomin1,2
1 Chengdu Institute of Products Quality Inspection Co.,Ltd., Chengdu 610100, China
2 National Center for Building Material Quality Supervision and Inspection(Sichuan), Chengdu 610100, China
3 Sichuan Institute of Product Quality Supervision and Inspection, Chengdu 610100, China
下载:  全 文 ( PDF ) ( 5141KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为了实现Si-Mn矿渣的高效利用,通过气流分级机将Si-Mn矿粉分为D50=6.9 μm、17.9 μm和56.4 μm三个不同的粒度区间。采用等温量热仪(TAM air)、X射线衍射(XRD)仪、全自动压汞仪(MIP)、扫描电子显微镜-能谱(SEM-EDS)分析测试技术,研究了Si-Mn矿粉粒度对复合胶凝体系水化行为和微观结构的影响,并对其胶砂强度进行了评价。结果表明:各粒度区间的Si-Mn矿粉均能促进游离石灰、铝酸盐相和C3S等矿物的早期水化(30 min)放热速率;水化后期,Ca(OH)2 和熟料衍射峰强度随着Si-Mn矿粉粒度减小而显著降低;掺入细粒度的Si-Mn矿粉可增加硬化复合胶凝材料浆体凝胶孔数量,有效降低最可几孔径和总孔隙率;SEM-EDS结果进一步证实了硬化浆体孔结构的优化是由于细粒度Si-Mn矿粉表面生成了大量低钙硅比的C-S(Al, Mg)-H水化产物。值得注意的是:D50=6.9 μm和17.9 μm的Si-Mn矿粉掺量高达30%时,复合胶凝材料的胶砂强度超过了GB 175标准中42.5等级水泥的技术指标。因此这些粒度区间的Si-Mn矿粉可以被建议作为绿色水泥的生产和高性能混凝土配制中的矿物掺合料。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
周祥
赵华堂
李亮
杜浪
周双福
邵瞾
张晓敏
关键词:  Si-Mn矿粉  粒度  水化机理  微观结构  力学性能    
Abstract: To achieve the high efficient utilization of Si-Mn slag, a Si-Mn slag powder was classified into three fractions by an air classifier, with D50=6.9 μm, 17.9 μm, 56.4 μm, respectively. The effect of size fraction of Si-Mn slag on hydraulic activity and physical property in composite cementitious system were investigated by isothermal calorimeter(TAM air), X-ray diffraction (XRD), mercury intrusion porosimeter(MIP), scanning electron micorscope and energy dispersive X-ray spectrometer(SEM-EDS). The test results indicated that the early hydration reaction(30 min) of free lime, aluminate and C3S phase were promoted by all size fractions of Si-Mn slag from nucleation induction. The intensity peaks of Ca(OH)2 and clinker decreased dramatically with the decrease of particle size in the late hydration. The blended cement paste with finer Si-Mn slag resulted in a decrease in the most probable pore size and total porosity than that of the one with coarser Si-Mn slag. The SEM-EDS results further demonstrated that the hardened blended cement paste containing fine Si-Mn slag powder produced a denser microstructure because more C-S (Al, Mg)-H gels hydration products with low calcium were produced. It was noted that the strength could surpass the technical index of 42.5 grade cement in GB 175 standard when the content of Si-Mn slag powder with D50=6.9 μm and 17.9 μm was reached up to 30%. Thus, these fractions were strongly recommended to serve as mineral admixtures in blended cement production or concrete making.
Key words:  Si-Mn slag    particle size    hydraulic mechanism    microstructure    mechanical property
                    发布日期:  2021-07-16
ZTFLH:  TU528  
通讯作者:  zhaoht@cqi.org   
作者简介:  周祥,成都产品质量检验研究院有限责任公司,工程师。2017年6月毕业于西南科技大学,获得硕士学位。目前主要从事建材产品检验、先进建筑材料、固废综合利用等方面的研究工作。赵华堂,四川省产品质量监督检验检测院,高级工程师。1989年8月毕业于四川大学物理化学专业,取得硕士学位。曾在涂料行业工作,1998年3月以来一直从事产品质量检验及综合资源利用、建筑节能等方面的工作,在国内外重要期刊发表文章10余篇。
引用本文:    
周祥, 赵华堂, 李亮, 杜浪, 周双福, 邵瞾, 张晓敏. Si-Mn矿粉粒度对复合胶凝体系水化机理和力学性能的影响[J]. 材料导报, 2021, 35(Z1): 279-283.
ZHOU Xiang, ZHAO Huatang, LI Liang, DU Lang, ZHOU Shuangfu, SHAO Zhao, ZHANG Xiaomin. Effect of Particle Size of Si-Mn Slag on Hydraulic Mechanism and Mechanical Property in Composite Cementitious System. Materials Reports, 2021, 35(Z1): 279-283.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2021/V35/IZ1/279
1 吴中伟. 建筑技术, 1999, 30(3), 161.
2 张同生. 水泥熟料与辅助性胶凝材料的优化匹配. 博士学位论文,华南理工大学, 2012.
3 董方园, 郑山锁, 宋明辰, 等. 材料导报:综述篇, 2018, 32(1), 163.
4 Moisés Frías, Rodríguez C. Cement and Concrete Composites, 2008, 30(3), 212.
5 Péra J, Ambroise J, Chabannet M. Cement and Concrete Research, 1999, 29(2), 177.
6 陈平, 王一靓, 刘婷, 等. 材料导报, 2010, 24(专辑15), 448.
7 王一靓, 陈平, 刘婷, 等. 混凝土, 2010(5), 64.
8 Frias M, De Rojas M I, Santamaria J, et al. Cement and Concrete Research, 2006, 36(3), 491.
9 Nath S K, Kumar S. Construction and Building Materials, 2016, 125, 127.
10 Allahverdi A, Ahmadnezhad S. Powder Technology, 2014, 251, 42.
11 Patil A V, Pande A M. Advanced Materials Research, 2011, 255-260, 3258.
12 范春平, 倪文, 杨慧芬, 等. 硅酸盐通报, 2007, 26(3), 541.
13 卢忠远. 微纳粉体对水泥物理力学性能的影响及机理研究, 博士学位论文,四川大学, 2005.
14 Chindaprasirt P, Jaturapitakkul C, Sinsiri T. Construction and Building Materials, 2007, 21, 1536.
15 何真, 王磊, 邵一心, 等. 建筑材料学报, 2011, 14(3), 298.
16 牛全林, 冯乃谦, 杨静. 建筑材料学报, 2002, 32(1), 89.
17 周祥, 李玉香, 郑召, 等. 混凝土与水泥制品, 2017(1), 6.
18 苏英, 卢敏, 贺行洋, 等. 混凝土, 2019(8), 105.
[1] 刘宝友, 岳新艳, 冯东, 茹红强, 刘春明. 碳含量对无压烧结碳化硅陶瓷的显微组织和力学性能的影响[J]. 材料导报, 2021, 35(Z1): 169-171.
[2] 曾纪军, 高占远, 阮冬. 氧化石墨烯水泥基复合材料的性能及研究进展[J]. 材料导报, 2021, 35(Z1): 198-205.
[3] 孙茹茹, 王振, 黄法礼, 易忠来, 袁政成, 谢永江, 李化建. 不同岩性石粉-水泥复合胶凝材料性能研究[J]. 材料导报, 2021, 35(Z1): 211-215.
[4] 石妍, 李家正, 李杨, 韩炜. 混凝土表面热喷涂陶瓷防护涂层的可行性试验研究[J]. 材料导报, 2021, 35(Z1): 238-241.
[5] 徐连勇, 高雅琳, 赵雷, 韩永典, 荆洪阳. Hastelloy X激光熔覆工艺及组织性能[J]. 材料导报, 2021, 35(Z1): 357-361.
[6] 薛河, 刘吉, 张顺, 张建龙, 孙裕满, 毕跃起. 基于UMAT焊接接头力学性能连续变化的表征方法及应用[J]. 材料导报, 2021, 35(Z1): 362-366.
[7] 姚刚, 刘衍腾, 邓云华, 续润洲, 赵伟. 钛合金蜂窝壁板楔形件静强度测试及失效模式分析[J]. 材料导报, 2021, 35(Z1): 367-370.
[8] 刘甲, 陈高澎, 马照伟, 雷小伟, 贾晓飞, 崔永杰. 钛合金混合保护气等离子弧焊接头组织及性能[J]. 材料导报, 2021, 35(Z1): 371-373.
[9] 曾小川, 李学军, 邓小云, 胡侨丹, 尤磊. SA508 Gr.4N钢的辐照脆化性能研究进展[J]. 材料导报, 2021, 35(Z1): 438-442.
[10] 田飞, 蔺宏涛, 江海涛. 高强度钢QP980激光焊接头的微观组织与力学性能[J]. 材料导报, 2021, 35(Z1): 447-453.
[11] 李伟培, 何世杰, 邱志明, 吴松平, 严玉蓉. 载体孔属性对多孔复合PCMs热性能的影响:综述[J]. 材料导报, 2021, 35(Z1): 495-500.
[12] 杨达, 卢明阳, 宋迪, 白书霞, 张国华, 胡秀颖, 庞来学. 地质聚合物水泥的研究进展[J]. 材料导报, 2021, 35(Z1): 644-649.
[13] 李道秀, 韩梦霞, 张将, 彭银江, 孙谦谦, 刘桂亮, 刘相法. 细晶Al-Si-Mg合金的组织遗传性与高屈服强度设计[J]. 材料导报, 2021, 35(9): 9003-9008.
[14] 聂金凤, 范勇, 赵磊, 刘相法, 赵永好. 颗粒增强铝基复合材料强韧化机制的研究新进展[J]. 材料导报, 2021, 35(9): 9009-9015.
[15] 钟诗宇, 张丁非, 胥钧耀, 赵阳, 冯靖凯, 蒋斌, 潘复生, 杨静波. 含Gd的Mg-Al系合金研究现状[J]. 材料导报, 2021, 35(9): 9016-9027.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[3] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[4] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[5] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[6] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[7] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[8] JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes[J]. Materials Reports, 2017, 31(22): 10 -14 .
[9] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[10] ZHOU Dianwu, HE Rong, LIU Jinshui, PENG Ping. Effects of Ge, Si Addition on Energy and Electronic Structure of ZrO2 and Zr(Fe,Cr)2[J]. Materials Reports, 2017, 31(22): 146 -152 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed