Please wait a minute...
材料导报  2021, Vol. 35 Issue (Z1): 284-287    
  无机非金属及其复合材料 |
硅基材料和矿渣应用于水泥基材料的研究进展
周顺, 周涵, 李东旭
南京工业大学材料科学与工程学院,南京 210009
Research Progress of Silicon-based Materials and Slag Applied to Cement-based Materials
ZHOU Shun, ZHOU Han, LI Dongxu
College of Material Science and Engineering, Nanjing University of Technology, Nanjing 210009, China
下载:  全 文 ( PDF ) ( 3004KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 水泥基材料是目前使用量最大的建筑材料,在实际应用过程中,水泥基材料会出现损坏,达不到预期的性能要求。水泥水化产物中存在大量结晶的Ca(OH)2,影响各种水泥水化产物之间的粘结性,造成水泥基材料性能的降低。如何增强水泥基材料的性能成了国内外研究的热点,需要找到能够有效改善水泥基材料性能的方法。
查阅国内外相关文献发现,将粉煤灰、硅灰、纳米SiO2(因三种材料的主要组分为SiO2,以下统称为硅基材料)或矿渣掺入到水泥基材料中,因其具有火山灰反应,并能起到填充作用,可明显提高水泥基材料的性能。掺合料的加入可降低水泥基材料中Ca(OH)2含量,减小其晶粒尺寸,使C-S-H凝胶的数量增多,改善水泥基材料的孔隙率,提高其性能。
粉煤灰和矿渣成分中有部分玻璃态物质,能减少水泥浆体用水量,增加和易性;具有较低的火山灰性,适量掺入能降低水泥浆体的水化速度;含有粉煤灰或矿渣的水泥基材料早期强度较低,后期强度较高。硅灰与纳米SiO2的火山灰活性较高,能促进水化,适量掺入能够使水泥基材料早期强度大幅提高,但后期强度发展较慢;同时也会增大水泥基材料早期收缩,增加其结构开裂的风险。不同掺合料复掺后能产生协同增强效应,可获得性能优异的复掺改性水泥基材料。
本文主要介绍了硅基材料和矿渣在水泥基材料中的应用,从反应机理、水化热、强度、孔隙率等方面来阐述其在水泥基材料中的研究现状和相关成果。对目前研究中存在的相关问题进行了分析总结,以期为制备性能优异的水泥基材料提供一定的参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
周顺
周涵
李东旭
关键词:  硅基材料  矿渣  水泥基材料  反应机理    
Abstract: Cement-based materials are currently the most widely used building materials. In the actual application process, cement-based materials will be damaged and fail to meet the expected performance requirements. There are a large amount of Ca(OH)2 crystals in the hydration pro-ducts, which affects the bonding between various cement hydration products, resulting in the reduction of cement-based materials performance. At home and abroad, how to enhance the performance of cement-based materials has become a hot issue in research, and it is necessary to find effective methods to enhance the performance of cement-based materials.
By referring to relevant literatures at home and abroad, it is found that fly ash, silica fume, nano-SiO2 (SiO2 as the main component of the three materials, these materials are collectively referred to as silicon-based materials) or slag are added into cement-based materials. Because of its pozzolanic reaction and filling effects, the performance of cement-based materials can be enhanced obviously. The content of Ca(OH)2 in cement-based materials can be reduced by adding admixtures. Admixtures also can reduce its grain size, increase the amount of C-S-H gel, improve the porosity of cement-based materials, and improve its performance.
There are some glassy substances in the components of fly ash and slag, which can reduce the water consumption of cement paste and improve the workability. It has low pozzolanic activity, and the hydration rate of cement paste can be reduced by proper addition. The early strength of cement-based materials containing fly ash or slag is lower, and the later strength is higher. Silica fume and nano-SiO2 have high pozzolanic activity, which can promote hydration, and the strength of cement-based materials can be greatly improved in the early stage, but the strength development is slow in the later stage. At the same time, it will increase the early shrinkage of cement-based materials and increase the risk of structural cracking. Different admixtures can produce synergistic enhancement effect. The compound modified cement-based materials with excellent properties can be obtained.
This article mainly introduces the application of silicon-based materials and slag in cement-based materials, and describes the research status and related aspects of cement-based materials in terms of mechanism of action, heat of hydration, strength, porosity, etc. The related problems in the current research are analyzed and summarized in order to provide some reference for the production of cement-based materials with excellent performance.
Key words:  silicon based materials    slags    cement based materials    reaction mechanism
                    发布日期:  2021-07-16
ZTFLH:  TU525  
  TU528  
基金资助: 国家自然科学基金( 51872137)
通讯作者:  dongxuli@njtech.edu.cn   
作者简介:  周顺,现为南京工业大学材料科学与工程学院硕士研究生,在李东旭教授的指导下进行研究,主要研究方向为水泥基材料。李东旭,南京工业大学材料科学与工程学院教授、博士研究生导师。1982 年、1985 年分别获浙江大学学士学位、硕士学位。1998 年获南京化工大学博士学位。2000 年浙江大学博士后出站。主要从事新型碱胶凝材料、环境协调性胶凝材料和生物材料的物理化学原理和固态工业废渣的综合利用等方研究。承担国家“973”项目,担任第3课题“性能调节型辅助性胶凝组分的研究”的课题负责人。获节能型钢渣水泥获化工部科技进步三等奖,江苏省优秀论文奖和研究生社会实践优秀指导教师的称号,近五年在国内外重要刊物上发表学术论文30多篇,被SCI收录论文9篇。
引用本文:    
周顺, 周涵, 李东旭. 硅基材料和矿渣应用于水泥基材料的研究进展[J]. 材料导报, 2021, 35(Z1): 284-287.
ZHOU Shun, ZHOU Han, LI Dongxu. Research Progress of Silicon-based Materials and Slag Applied to Cement-based Materials. Materials Reports, 2021, 35(Z1): 284-287.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2021/V35/IZ1/284
1 Nochaiya T, Wongkeo W, Chaipanich A. Fuel, 2009, 89(3), 768.
2 Wei F J, Grutzeck M W, Roy D M. Pergamon, 1985, 15(1), 174.
3 Bentz D P, Jensen O M, Coats A M, et al. Cement and Concrete Research, 2000, 30(7), 1121.
4 李虹燕, 丁铸, 邢锋, 等. 混凝土, 2008(10), 54.
5 方萍, 孟祥银.粉煤灰综合利用, 1996(1), 30.
6 陆小黑, 刘焕成, 王彩萍. 粉煤灰综合利用, 2013(6), 28.
7 曹大伟. 玻璃, 2018, 45(8), 22.
8 Rao G A. Cement and Concrete Research, 2003, 33(11), 1765.
9 刘军, 李瑶, 崔云鹏, 等. 沈阳建筑大学学报(自然科学版), 2013, 29(6), 1065.
10 Madhurima B, Venkatanarayanan H K. Construction and Building Mate-rials, 2018, 188, 1179.
11 Li Y, Kwan A. Cement and Concrete Composites, 2014, 49, 26.
12 冯辉红, 鲁黎, 陈静思, 等. 应用化工, 2014, 43(3), 389.
13 Mohammad B, Alireza J, Fadi A . Construction and Building Materials, 2018, 181, 27.
14 Ltifi M, Guefrech A, Mounanga P, et al. Procedia Engineering, 2011(10), 900.
15 Park T. Construction and Building Materials, 2007, 21(6), 1351.
16 Aggarwal P, Singh R P, Aggarwal Y, et al . Cogent Engineering, 2015, 2(1), 1078018.
17 Li G. Cement and Concrete Research, 2004, 34(6), 1043.
18 巴恒静, 冯奇, 杨英姿. 硅酸盐学报, 2002(6), 780.
19 Li W G, Huang Z Y, Cao F L, et al. Construction and Building Mate-rials, 2015, 95, 366.
20 Rong Z D , Sun W , Xiao H J, et al.Cement and Concrete Composites, 2015, 56, 25.
21 Shah S P, Hou P K, Konsta-Gdoutos M S. Sustainable Cement-Based Materials, 2016, 5(1-2), 2.
22 Hou P K, Kawashima S, Kong D Y, et al. Composites Part B: Enginee-ring, 2013, 45(1), 440.
23 Chithra S, Kumar S, Chinnaraju K. Construction and Building Materials, 2016, 113, 794.
24 唐明, 巴恒静, 李颖. 硅酸盐学报, 2003(5), 523.
25 Kong D Y, Hou P K, Yang Y, et al. Cement and Concrete Composites, 2015, 63, 30.
26 Xu G, HE X Y, He Y B. Journal of Wuhan University of Technology(Materials Science), 2018, 33(5), 1186.
27 Jiang W G, Li X G, Lv Y, et al. Construction and Building Materials, 2020, 238, 117683.
28 Nedunuri S, Sertse S G, Muhammad S. Construction and Building Mate-rials, 2020, 238, 117561.
29 Liu M L, Zhou Z H, Zhang X Z, et al.Construction and Building Mate-rials, 2016, 126, 624.
[1] 张小涛, 李庆超, 李东旭. 碳基材料对水泥基材料性能的影响[J]. 材料导报, 2021, 35(Z1): 220-224.
[2] 杨达, 卢明阳, 宋迪, 白书霞, 张国华, 胡秀颖, 庞来学. 地质聚合物水泥的研究进展[J]. 材料导报, 2021, 35(Z1): 644-649.
[3] 李刊, 魏智强, 乔宏霞, 路承功, 郭健, 乔国斌. 四大类外掺材料对聚合物改性水泥基材料性能影响的研究进展[J]. 材料导报, 2021, 35(Z1): 654-661.
[4] 石达, 史才军, 吴泽媚, 张祖华, 李凯, 刘翼玮, 侯赛龙. 基于水泥基材料组分的自愈合研究进展[J]. 材料导报, 2021, 35(7): 7096-7106.
[5] 李爽, 刘和鑫, 杨永, 李青, 张之璐, 朱效宏, 杨长辉, 杨凯. 碱激发矿渣/偏高岭土复合胶凝材料干燥收缩机理研究[J]. 材料导报, 2021, 35(4): 4088-4091.
[6] 刘志勇, 夏溪芝, 陈威威, 张云升, 刘诚. 水泥基材料微结构演变及其传输性能的数值模拟[J]. 材料导报, 2021, 35(3): 3076-3084.
[7] 郭丽萍, 薛晓丽, 曹园章, 费香鹏, 丁聪. 水泥基胶凝材料氧化物含量与氯离子结合量的定量关系[J]. 材料导报, 2021, 35(2): 2039-2045.
[8] 王金朋, 薛志超, 马颖, 李洁, 刘思丹, 孙红. 基于第一性原理的锂空气电池Si掺杂MoS2正极催化氧还原反应机理研究[J]. 材料导报, 2021, 35(10): 10001-10007.
[9] 石加顺, 钱如胜, 张云升, 陈逸东, 钱佳佳, 刘志勇. 水泥基材料气体渗透性测试方法及与耐久性关系的研究进展[J]. 材料导报, 2021, 35(1): 1121-1130.
[10] 赵颖, 刘维胜, 王欢, 顾菲, 车玉君, 杨华山. 石灰石粉对3D打印水泥基材料性能的影响[J]. 材料导报, 2020, 34(Z2): 217-220.
[11] 王德军, 李慧, 姜锡仁, 赵朝成, 赵玉慧, 邓春梅, 王鑫平. 高级氧化技术去除水环境中多环芳烃的研究进展[J]. 材料导报, 2020, 34(Z2): 507-512.
[12] 苏岳威, 张宁, 吕宪俊, 王俊祥. 水玻璃模数对矿渣基胶凝材料水化特性及动力学的影响[J]. 材料导报, 2020, 34(Z1): 271-276.
[13] 赵立敏, 王惠亚, 解启飞, 邓秉浩, 张芳, 何丹农. 车用动力锂离子电池纳米硅/碳负极材料的制备技术与发展[J]. 材料导报, 2020, 34(7): 7026-7035.
[14] 盖海东, 冯春花, 董一娇, 赵倩, 李东旭. 纳米压痕技术应用于水泥基材料的研究进展[J]. 材料导报, 2020, 34(7): 7107-7114.
[15] 张少辉, 王艳, 牛荻涛. 废旧纤维在水泥基材料中的应用研究进展[J]. 材料导报, 2020, 34(23): 23042-23050.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[3] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[4] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[5] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[6] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[7] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[8] JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes[J]. Materials Reports, 2017, 31(22): 10 -14 .
[9] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[10] ZHOU Dianwu, HE Rong, LIU Jinshui, PENG Ping. Effects of Ge, Si Addition on Energy and Electronic Structure of ZrO2 and Zr(Fe,Cr)2[J]. Materials Reports, 2017, 31(22): 146 -152 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed