Please wait a minute...
材料导报  2021, Vol. 35 Issue (Z1): 269-273    
  无机非金属及其复合材料 |
无损状态下钢桥面沥青铺装材料变形恢复特性
王民1,2, 樊向阳3,4, 王滔1, 罗蓉3,4, 胡德勇1, 石晨光3,4
1 重庆市智翔铺道技术工程有限公司,重庆 401336
2 招商局重庆交通科研设计院有限公司,重庆 400067
3 武汉理工大学交通学院,武汉 430063
4 湖北省公路工程技术研究中心,武汉 430063
Characterization of Recovery Properties of Steel Bridge Pavement Asphalt Materials on Non-destructive Test
WANG Min1,2, FAN Xiangyang3,4, WANG Tao1, LUO Rong3,4, HU Deyong1, SHI Chenguang3,4
1 Chongqing Zhixiang Paving Technology Engineering Co., Ltd., Chongqing 401336, China
2 China Merchants Chongqing Communications Research and Design Institute Co., Ltd., Chongqing 400067, China
3 School of Transportation, Wuhan University of Technology, Wuhan 430063, China
4 Hubei Highway Engineering Research Center, Wuhan 430063, China
下载:  全 文 ( PDF ) ( 3153KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 钢桥面铺装用高性能材料的组成及性能差异较大,目前对钢桥面铺装材料性能的研究主要集中在加载阶段的强度规律及损伤行为,而对卸载阶段材料的变形恢复特性研究甚少。为评价钢桥面铺装材料在卸载阶段的变形恢复能力,针对蠕变逐级加载试验方法存在的不足,提出了重复蠕变逐级加载恢复试验,对浇注式沥青混合料、环氧沥青混合料、沥青玛蹄脂碎石混合料三种典型钢桥面铺装材料,在卸载阶段不同时刻的内应力及对应时刻的残余应变进行测试。根据恢复模量的定义,计算三个不同蠕变应力水平下的恢复模量,依次来评价三种材料驱动变形恢复的能力。同时,基于粘弹性基本理论,确定蠕变柔量的拟合参数,并计算不同间隔时间下三种材料的应变恢复率,评价其变形恢复的速度。试验结果表明:无损状态下材料的恢复模量不同于内应力,不随蠕变荷载大小的变化而变化,环氧沥青混合料的恢复模量最大,约为沥青玛蹄脂碎石混合料、浇注式沥青混合料的7倍和4倍,环氧沥青混合料材料自身驱动变形恢复的能力优于浇注式沥青混合料和沥青玛蹄脂碎石混合料;但在相同时间间隔时间下,浇注式沥青混合料的应变恢复率最快,在3.6 s内,应变恢复率即可达到82%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王民
樊向阳
王滔
罗蓉
胡德勇
石晨光
关键词:  钢桥面铺装材料  浇注式沥青混合料  变形恢复  内应力  恢复模量  应变恢复率    
Abstract: The composition and properties of high performance materials for steel bridge deck pavement are quite different, the research of perfor-mance of steel deck pavement material is mainly focused on the strength rule and damage behavior of the loading stage, and less research has been done on the deformation recovery characteristics of the material in the unloading phase. To evaluate the deformation recovery capacity of steel deck surfacing material during the unloading phase, repeated creep and step-loading recovery test was proposed to overcome the shortcomings of creep and step-loading recovery test. It was used to measure the internal stress and residual strain at different time of unloading phase of three typical steel bridge deck paving materials including gussasphalt, epoxy asphalt mixture and stone mastic asphalt. According to the definition of recovery modulus, the recovery modulus at three different creep stress levels was calculated, and the drive deformation recovery ability of the three materials was evaluated in turn. At the same time, based on the viscoelastic theory, the fitting parameters of creep flexibility were determined, and the strain recovery rate of three materials at different intervals were calculated, in order to evaluating the rate of deformation recovery. The results show that the recovery modulus of the materials in a non-destructive state are different from the internal stress, and do not change with the size of the creep load. The epoxy asphalt mixture has the largest recovery modulus, which is about 7 times and 4 times that of the stone mastic asphalt and gussasphalt, and the drive deformation recovery ability of epoxy asphalt mixture is better than gussasphalt and stone mastic asphalt. But at the same interval, the strain recovery rate of gussasphalt is the fastest, and can reach 82% within 3.6 s.
Key words:  steel bridge pavement materials    gussasphalt    deformation recovery    internal stress    recovery modulus    strain recovery rate
                    发布日期:  2021-07-16
ZTFLH:  U416  
基金资助: 重庆市科技创新领军人才支持计划(CSTCCXLJRC201902);重庆市科技计划项目(社会事业与民生保障科技创新专项)(cstc2015shmszx30027);湖北省交通科技项目(2016-600-2-2)
通讯作者:  715337854@qq.com   
作者简介:  王民,工学博士、研究员,重庆市智翔铺道技术工程有限公司首席专家,重庆市桥面铺装工程技术研究中心副主任,重庆市科技创新领军人才,重庆交通大学兼职硕士研究生导师。十余年一直从事钢桥面铺装结构设计、材料研发、施工咨询等方面的工作,先后支持完成了30余项桥面铺装科研、咨询项目;编写行业规范3部,主编专著2部,发表科技论文70余篇,获授权专利20余项,获省部级科学进步奖9项。研究成果先后在港珠澳大桥、莫桑比克马普托大桥、安徽马鞍山长江公路大桥、武汉沌口长江大桥、重庆朝天门长江大桥等40余座大跨径桥梁应用,全面支撑了大跨径桥梁建设发展。樊向阳,武汉理工大学博士研究生。研究领域包括土木工程材料的本构关系、粘弹性断裂力学、粘塑性力学、损伤力学、道路结构与材料力学分析、沥青混合料路用性能分析与预测、复合材料微观力学分析、有限元模拟与计算、材料性能试验设计与方法等。
引用本文:    
王民, 樊向阳, 王滔, 罗蓉, 胡德勇, 石晨光. 无损状态下钢桥面沥青铺装材料变形恢复特性[J]. 材料导报, 2021, 35(Z1): 269-273.
WANG Min, FAN Xiangyang, WANG Tao, LUO Rong, HU Deyong, SHI Chenguang. Characterization of Recovery Properties of Steel Bridge Pavement Asphalt Materials on Non-destructive Test. Materials Reports, 2021, 35(Z1): 269-273.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2021/V35/IZ1/269
1 Luo S, Qian Z, Yang X, et al.Construction & Building Materials, 2017, 156,131.
2 Yang Y, Qian Z, Song X.Construction & Building Materials, 2015, 94,299.
3 Liu Y, Yao B, Yu C, et al.International Journal of Adhesion & Adhesives, DOI:10.1016/j.ijadhadh.2018.04.011.
4 Zhang H, Zhang G, Han F, et al.Construction & Building Materials, 2018, 159,83.
5 Jia Xiaoyang, Huang Baoshan, Chen Shangjiang,et al. KSCE Journal of Civil Engineering, 2016, 20(7),2755.
6 黄卫东,李本亮,黄明.建筑材料学报,2015,18(4),572.
7 黄卫东,林鹏,郑茂,等.建筑材料学报,2016,19(5),950.
8 杨军,王昊鹏,廖辉. 东南大学学报:自然科学版,2016,46(1),511.
9 Zhang J, Simate G S, Sang I L, et al.Construction & Building Mate-rials, 2016, 111,644.
10 Zhang J, Faruk A N M, Karki P, et al.Construction & Building Mate-rials, 2016, 121,236.
11 Luo Xue, Luo Rong, Robert L Lytton. International Journal of Solids and Structures,2015, 60-61,35.
12 Luo Xue, Luo Rong, Robert L Lytton.Construction and Building Mate-rials, 2013, 48,610.
[1] 王子云, 赵鹏越, 郭永博, 张凯, 王康. 梯度纳米多晶铜纳米切削过程的分子动力学仿真[J]. 材料导报, 2019, 33(Z2): 419-423.
[2] 康学良, 董世运, 汪宏斌, 门平, 徐滨士, 闫世兴. 基于磁巴克豪森原理的铁磁材料各向异性检测技术综述[J]. 材料导报, 2019, 33(1): 183-190.
[3] 朱麟,刘新宝,辛甜,潘成飞,刘剑秋. 基于微观组织演化的P91钢长时蠕变寿命预测*[J]. 材料导报编辑部, 2017, 31(10): 137-140.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[3] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[4] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[5] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[6] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[7] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[8] JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes[J]. Materials Reports, 2017, 31(22): 10 -14 .
[9] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[10] ZHOU Dianwu, HE Rong, LIU Jinshui, PENG Ping. Effects of Ge, Si Addition on Energy and Electronic Structure of ZrO2 and Zr(Fe,Cr)2[J]. Materials Reports, 2017, 31(22): 146 -152 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed