Please wait a minute...
材料导报  2021, Vol. 35 Issue (20): 20119-20123    https://doi.org/10.11896/cldb.20080129
  金属与金属基复合材料 |
添加Ti对Fe-4%Si合金凝固组织的影响及机理
白慧怡1, 计云萍1,2, 李一鸣3, 任慧平1,2
1 内蒙古科技大学材料与冶金学院,包头 014010
2 内蒙古自治区新金属材料重点实验室,包头 014010
3 内蒙古科技大学分析测试中心,包头 014010
Effect of Adding Ti on Solidification Structure of Fe-4%Si Alloy and Its Mechanism
BAI Huiyi1, JI Yunping1,2, LI Yiming3, REN Huiping1,2
1 School of Materials and Metallurgy, Inner Mongolia University of Science and Technology, Baotou 014010, China
2 Key Laboratory of Advanced Metal Material of Inner Mongolia Autonomous Region, Baotou 014010, China
3 Analytical and Testing Center of Inner Mongolia University of Science and Technology, Baotou 014010, China
下载:  全 文 ( PDF ) ( 4588KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 选用能将初生δ-铁素体保留至室温的Fe-4%Si合金,通过对比添加Ti与不加Ti的合金铸锭的宏观组织,研究添加Ti对Fe-4%Si合金凝固组织的细化作用。采用SEM+EDS对含Ti合金中Ti化合物相进行观察表征,并利用EBSD结合能谱分析对其进行相鉴定。利用边-边匹配(E2EM)模型计算TiN与δ-Fe之间的原子匹配错配度,预测两者之间的位向关系,从晶体学角度探讨TiN对δ-Fe异质形核的效用,并分析Ti的溶质作用。结果表明,添加0.065% Ti使Fe-4%Si合金凝固组织中的柱状晶全部变为等轴晶,添加Ti原位形成的TiN能够作为Fe-4%Si合金凝固时δ-铁素体异质形核的有效核心,TiN的异质形核作用及Ti的溶质作用使柱状晶全部变为等轴晶,有效细化了Fe-4%Si合金的凝固组织。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
白慧怡
计云萍
李一鸣
任慧平
关键词:  Ti  δ-铁素体  凝固细化  异质形核  溶质作用    
Abstract: AFe-4%Si alloy was selected to investigate the effect of Ti addition on the refinement of the structure during solidification for it can retain the primary δ-ferrite to room temperature after solidification. The macrostructures of the Fe-4%Si alloys with and without Ti addition were observed through a digital camera. The Ti-containing compounds were examined using a scanning electronic microscope (SEM) equipped with energy-dispersive X-ray spectroscopy (EDS). The phase identifications of the Ti-containing compounds were conducted by combining the electron backscatter diffraction (EBSD) with the EDS. To evaluate the possibility and the potency of the heterogeneous nucleation of δ-ferrite on the TiN particles with high melting points from the crystallographic point view, the edge-to-edge matching (E2EM) model was used to calculate the atomic matching mismatch between the TiN particles and δ-ferrite and predict the orientation relationship between them. The solute effect of Ti on the grain refinement of Fe-4%Si alloy was theoretically discussed. The results show that the columnar structures in the Fe-4%Si alloy as-cast changed to total equiaxed crystals through addition of 0.065% Ti. The combination of the heterogeneous nucleation of δ-ferrite on the in-situ formed TiN and the solute action of Ti resulted in the transformation of columnar structures to equiaxed crystals in Fe-4%Si alloy during solidification. The solidification microstructure of Fe-4%Si alloy is effectively refined.
Key words:  Ti    δ-ferrite    grain refinement in solidification    heterogeneous nucleation    solute effect
               出版日期:  2021-10-25      发布日期:  2021-11-12
ZTFLH:  TG111.4  
基金资助: 国家自然科学基金(51761034)
通讯作者:  jiyunpingpp@163.com   
作者简介:  白慧怡,2019年6月毕业于内蒙古科技大学,获得硕士学位。于2019年9月至今在内蒙古科技大学攻读博士研究生学位,主要从事于铸态金属晶粒细化晶体学研究。
计云萍,内蒙古科技大学,教授。主要研究领域:铸态金属及合金晶粒细化晶体学、稀土在钢铁材料中应用的基础研究、高性能高精度钢铁材料组织结构的研究。
引用本文:    
白慧怡, 计云萍, 李一鸣, 任慧平. 添加Ti对Fe-4%Si合金凝固组织的影响及机理[J]. 材料导报, 2021, 35(20): 20119-20123.
BAI Huiyi, JI Yunping, LI Yiming, REN Huiping. Effect of Adding Ti on Solidification Structure of Fe-4%Si Alloy and Its Mechanism. Materials Reports, 2021, 35(20): 20119-20123.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20080129  或          http://www.mater-rep.com/CN/Y2021/V35/I20/20119
1 Zhang X, Liu T. Applied Surface Science,2015,344(30),171.
2 Kim J K, Lee B J, Lee B H, et al. Scripta Materialia,2009,61(12),1133.
3 Li G, Lan P, Zhang J Q. Acta Metallurgica Sinca,2020,56(5),704(in Chinese).
李根,兰鹏,张家泉.金属学报,2020,56(5),704.
4 Shi C X, Cheng G G, Li Z J, et al. Journal of Iron and Steel Research International,2008(3),57.
5 Kang Y, Mao W M, Chen Y J. Materials Science & Engineering A,2016,677(20),211.
6 Grong Ø, Kluken A. Metallurgical & Materials Transactions A,1995,26(3),525.
7 Greer A L, Bunn A M. Acta Materialia,2000,48(11),2823.
8 Ji Y P, Li Y M, Zhang M X, et al. Metallurgical and Materials Transactions A,2020,51(4),1707.
9 Li M, Li J M, Zheng Q, et al. Metallurgical and Materials Transactions A,2018,49,2235.
10 Massalski T B, Okamoto H, Subramanian P R, et al. Materials Park Ohio,1990,3,2316.
11 Tuttle R. International Journal of Metalcasting,2012,6(2),51.
12 Ali Y, Qiu D, Jiang B, et al. Journal of Alloys and Compounds,2015,619,639.
13 Park J H. Calphad-Computer Coupling of Phase Diagrams & Thermoche-mistry,2011,35(4),455.
14 Shim J H, Oh Y J. Acta Materialia,2001,49(12),2115.
15 Woo-Yeol C, Tetsuya N. ISIJ International,2006,46(7),996.
16 Dowling J M, Corbett J M, Kerr H W. Metallurgical Transactions A,1986,17(9),1611.
17 Huang L, Deng X, Wang Q, et al. Wear,2020,458,203444.
18 Ji Y P, Li Y M, Zhang M X, et al. Metallurgical and Materials Transactions A,2019,50,1787.
19 Cai J Z, Li N G. The Iron and Steel Institute of Japan,2018,58(5),965.
20 Kelly P M, Zhang M X. Materials Forum,1999,23,41.
21 Kelly P M, Zhang M X. Scripta Materialia,2005,52(10),963.
22 Wang F, Qiu D, Liu Z L, et al. Acta Materialia,2013,61,5636.
23 Ali Y, Qiu D, Jiang B, et al. Scripta Materialia,2016,114,103.
24 Liu Z, Qiu D, Wang F, et al. Acta Materialia,2014,79,315.
25 Ji Y P, Kang L, Song Y Q, et al. Rare Metal Materials and Engineering,2017,46(10),2889(in Chinese).
计云萍,亢磊,宋艳青,等.稀有金属材料与工程,2017,46(10),2889.
26 Mills A R, Thewlis G. Metal Science Journal,2013,3(12),1051.
27 Gregg J M, Bhadeshia H K D H. Acta Materialia,1997,45(2),739.
28 Easton M A, Qian M. Current Opinion in Solid State & Materials Science,2015,20(1),13.
29 Goldbeck V, Kubaschewski O. Iron-Binary Phase Diagrams, ASM International,1982,64,139.
30 Stjohn D H, Qian M. Acta Materialia,2011,59(12),4907.
[1] 仲光洪, 汪丽莉, 杨稳. 电池负极材料Ti3C2M2 MXene表面修饰及Li存储能力的第一性原理计算研究[J]. 材料导报, 2021, 35(Z1): 15-20.
[2] 任万青, 徐掌印, 尹贻光, 祁震. TiFe基储氢材料性能的研究进展[J]. 材料导报, 2021, 35(Z1): 306-310.
[3] 赖旭平, 李天方, 刘瑞, 孙红亮. 元素Nb、Hf、Zr对γ-TiAl合金抗氧化性能的影响[J]. 材料导报, 2021, 35(Z1): 374-377.
[4] 袁傲明, 任学平. 固溶时效对1Cr21Ni5Ti双相不锈钢组织的影响[J]. 材料导报, 2021, 35(Z1): 443-446.
[5] 李金韩, 余少彬, 石梦童, 汪长征, 王强. 基于TiO2的光阳极材料应用于光催化燃料电池的研究进展[J]. 材料导报, 2021, 35(7): 7048-7055.
[6] 吴彦霞, 梁海龙, 陈鑫, 陈琛, 王献忠, 戴长友, 胡利明, 陈玉峰. 元素(Ce、Co、La、Sn)掺杂对V-Mo/TiO2催化剂脱硝活性的影响[J]. 材料导报, 2021, 35(6): 6020-6027.
[7] 刘敬福, 齐莉, 李广龙, 曲迎东. 真空搅拌TiCp/7075复合材料的组织、力学与耐磨性能[J]. 材料导报, 2021, 35(6): 6114-6119.
[8] 叶俊杰, 贺志荣, 张坤刚, 冯辉. 退火温度对Ti-50.8Ni-0.1Zr形状记忆合金丝记忆行为和力学性能的影响[J]. 材料导报, 2021, 35(4): 4118-4123.
[9] 黄雪丽, 谭君国, 张腾飞, 莫锦君, 高则翠, 钟星, 王启民. 钛合金表面TiN/CrN纳米多层薄膜的制备及耐磨、耐腐蚀性能[J]. 材料导报, 2021, 35(4): 4139-4143.
[10] 孙丽丽, 陈良源, 王勇, 张旭昀, 徐德奎. Zn-Cu-Ti合金的力学性能及腐蚀性能研究进展[J]. 材料导报, 2021, 35(3): 3152-3158.
[11] 宋庆功, 董珊珊, 胡烨, 康建海, 严慧羽, 王明超, 刘志锋. Mo掺杂对γ-TiAl基合金能量稳定性和抗氧化性的影响[J]. 材料导报, 2021, 35(2): 2057-2063.
[12] 狄翀博, 王金华, 闫二虎, 王星粤, 陈运灿, 贾丽敏, 徐芬, 孙立贤. Nb-Ti-Co氢分离合金的显微组织和耐腐蚀性能[J]. 材料导报, 2021, 35(18): 18109-18115.
[13] 鲍艳, 丁颖, 唐培, 康巧玲. 水性醇酸树脂/中空TiO2微球复合涂层的性能[J]. 材料导报, 2021, 35(18): 18200-18204.
[14] 姜坤, 刘桂亮, 赵凯, 杨化冰, 孙谦谦, 刘相法. 抗Si“中毒”AlTiC-B晶种合金对ZL114铝合金组织和力学性能的影响[J]. 材料导报, 2021, 35(16): 16076-16080.
[15] 常垲硕, 郑光明, 李阳, 程祥, 刘焕宝, 赵光喜. 湿式微喷砂处理对切削TC4的涂层刀具表面完整性及切削性能影响[J]. 材料导报, 2021, 35(16): 16086-16092.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed