Please wait a minute...
材料导报  2020, Vol. 34 Issue (6): 6095-6099    https://doi.org/10.11896/cldb.19020043
  无机非金属及其复合材料 |
微生物矿化沉积对再生骨料界面过渡区的影响
徐培蓁1, 陈发滨1, 李泉荃1, 任艺楠1, 吴春然2, 朱亚光1,2
1 青岛理工大学土木工程学院,青岛 266033;
2 深圳大学土木工程学院,广东省滨海土木工程耐久性重点实验室,深圳 518060
Effect of Microbial Mineralization Deposition on Interfacial Transition Zone of Recycled Aggregate
XU Peizhen1, CHEN Fabin1, LI Quanquan1, REN Yinan1, WU Chunran2, ZHU Yaguang1,2
1 College of Civil Engineering, Qingdao University of Technology, Qingdao 266033, China;
2 Guangdong Provincial Key Laboratory of Durability for Marine Civil Engineering, College of Civil Engineering, Shenzhen University, Shenzhen 518060, China
下载:  全 文 ( PDF ) ( 4850KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 骨料-水泥浆体的界面过渡区疏松多孔是导致再生骨料与天然骨料性能差异的重要原因。通过试验研究微生物矿化沉积技术对再生骨料界面过渡区性能的影响。使用水泥净浆包裹不同菌种和不同方式处理的再生骨料,养护后破碎获得骨料-水泥界面过渡区,通过SEM观察界面过渡区的微观形貌变化,利用纳米压痕试验测量界面过渡区的弹性模量和硬度,并结合再生砂浆块的抗压、抗折强度试验结果,分析微生物矿化沉积对再生骨料界面过渡区的改善效果。结果表明:再生骨料经假坚强芽孢杆菌和嗜碱芽孢杆菌处理后所制备的再生砂浆块的抗压、抗折强度及再生骨料界面过渡区的弹性模量和硬度均有明显提升,两菌种矿化生成碳酸钙的能力不同造成了性能提升效果的差异。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
徐培蓁
陈发滨
李泉荃
任艺楠
吴春然
朱亚光
关键词:  再生骨料  微生物矿化沉积  界面过渡区  纳米压痕  弹性模量    
Abstract: The porous interfacial transition zone of the aggregate-cement slurry is an important reason for the difference between the properties of recycled aggregate and natural aggregate. The effect of microbial mineralization deposition on interfacial transition zone of recycled aggregate was studied. Cement paste was used to wrap recycled aggregate treated by different bacteria in different ways. After curing, the aggregate-cement interface transition zone was obtained by crushing. SEM was used to observe the changes in the microstructure of the interface transition zone. The elastic modulus and hardness of the interface transition zone were measured by nano indentation instrument. Combined with the compressive and flexural strength test results of reclaimed mortar blocks, the improvement effect of microbial mineralization deposition on interfacial transition zone of recycled aggregate was analyzed. The results showed that the recycled aggregate was treated with bacillus pseudoadamus and bacillus basophilus. The compressive and flexural strength of the recycled mortar prepared and the elastic modulus and hardness of the interfacial transition zone of recycled aggregate were significantly increased. The different mineralization capacity of the two strains leads to the difference of performance improvement effect.
Key words:  recycled aggregate    microbial mineralization deposition    interfacial transition zone    nano indentation    elastic modulus
                    发布日期:  2020-03-12
ZTFLH:  TU502  
基金资助: 国家自然科学基金面上项目(51578342);中国博士后科学基金(2015M582418)
作者简介:  徐培蓁,女,博士,教授,硕士研究生导师,长期从事结构抗震、工程振动控制及建筑废弃物资源化利用的相关研究工作。主持完成国家自然基金项目1项,省自然基金项目1项,教育部留学生启动基金项目1项,博士后研究基金1项,青岛市科技计划项目1项等5项纵向课题;主持完成横向课题10余项,获得专利7项,其中发明专利2项,实用新型专利5项;第一作者公开发表学术论文30余篇,其中EI收录8篇;朱亚光,博士,副教授,硕士生导师。哈尔滨工业大学流动站与深圳大学工作站联合培养在站博士后,中国绿色建筑与节能委员会委员,中国建筑废弃物资源化学组成员。主要研究方向为建筑废弃物资源化利用与大跨桥梁施工控制与安全评价。主持国家自然科学基金面上项目1项,中国博士后科学基金资助项目1项,主持并完成青岛市公共领域科技支撑计划重点项目1项,参与完成国家“十五”科技支撑项目子课题1项,国家“十一五”科技支撑项目课题1项,国家自然基金2项,获得山东省科学技术三等奖和青岛市科技进步二等奖,已发表学术论文20余篇。
引用本文:    
徐培蓁, 陈发滨, 李泉荃, 任艺楠, 吴春然, 朱亚光. 微生物矿化沉积对再生骨料界面过渡区的影响[J]. 材料导报, 2020, 34(6): 6095-6099.
XU Peizhen, CHEN Fabin, LI Quanquan, REN Yinan, WU Chunran, ZHU Yaguang. Effect of Microbial Mineralization Deposition on Interfacial Transition Zone of Recycled Aggregate. Materials Reports, 2020, 34(6): 6095-6099.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19020043  或          http://www.mater-rep.com/CN/Y2020/V34/I6/6095
1 Xiao J Z. Recycled concrete, China Architecture & Building Press, China, 2008 (in Chinese).
肖建庄.再生混凝土,中国建筑工业出版社,2008.
2 Liu X, Zhang X, Li W X. Architecture Technology, 2010, 41 (1), 63 (in Chinese).
刘昕, 张雄, 李雯霞. 建筑技术,2010, 41 (1),63.
3 Chen D Y, Yuan W, Liu H. New Building Materials, 2009 (2), 20 (in Chinese).
陈德玉, 袁伟, 刘欢.新型建筑材料, 2009 (2),20.
4 Xiao J, Li J, Zhu B, et al. Construction and Building Materials,2002,16 (3),187.
5 Tittelboom K V, Belie N D, Muynck W D, et al. Cement & Concrete Research, 2010, 40 (1),157.
6 Lee G C, Choi H B. Construction & Building Materials, 2013, 40 (40),455.
7 Zhang X T. Study on modified regenerative aggregate and its mechanism by microbial mineralization deposition. Master's Thesis, Qingdao University of Technology, China, 2016 (in Chinese).
张晓彤.微生物矿化沉积改性再生骨料及其机理研究. 硕士学位论文, 青岛理工大学, 2016.
8 Gao L X, Sun G W. Journal of the Chinese Ceramic Society, 2013 (5), 627 (in Chinese).
高礼雄, 孙国文. 硅酸盐学报, 2013 (5), 627.
9 Jonkers H M, Thijssen A, Muyzer G, et al. Ecological Engineering, 2010, 36 (2),230.
10 Cheng L, Qian C X, Wang R X, et al. Journal of the Chinese Ceramic Society, 2008 (S1),215 (in Chinese).
成亮, 钱春香, 王瑞兴, 等. 硅酸盐学报, 2008 (S1), 215.
11 Zhu Y G, Wu C R, Wu Y K. et al. Concrete, 2018 (6),88 (in Chinese).
朱亚光, 吴春然, 吴延凯, 等. 混凝土, 2018 (6), 88.
12 Zhu Y G, Wu Y K, Wu C R. et al. J. Concrete, 2017 (12), 93 (in Chinese).
朱亚光, 吴延凯, 吴春然, 等. 混凝土, 2017 (12),93.
13 Poon C S, Shui Z H, Lam L. Construction and Building Materials, 2004, 18, 461.
14 Kisku N, Joshi H, Ansari M, et al. Construction and Building Materials, 2017, 131, 721.
15 Verian K P,Ashraf W, Cao Y. Resources, Conservation and Recycling, 2018, 133, 30.
16 Knop Y, Peled A. Materer Structures, 2016, 49 (1), 439.
17 Zhang J L, Wu R S, Li Y M, et al. Applied Microbiology and Biotechno-logy,2016,100 (15),6661.
[1] 张学元, 吕春, 张道明, 王丽, 李扬. 稻草纤维在轻骨料混凝土中的增韧性能及劈裂抗拉强度预测模型[J]. 材料导报, 2020, 34(2): 2034-2038.
[2] 任秀秀, 朱一举, 赵省向, 韩仲熙, 姚李娜. 四种含能晶体微观力学性能与摩擦性能的关系[J]. 材料导报, 2019, 33(z1): 448-452.
[3] 郭策安, 赵宗科, 赵爽, 卢凤生, 赵博远, 张健. 电火花沉积AlCoCrFeNi高熵合金涂层的高速摩擦磨损性能[J]. 材料导报, 2019, 33(9): 1462-1465.
[4] 崔岩, 倪浩晨, 曹雷刚, 杨越, 王一鸣. SiC颗粒整形对高体分铝基复合材料力学性能的影响及有限元模拟[J]. 材料导报, 2019, 33(24): 4126-4130.
[5] 黄柯,赵阳,张昌松,王晓明,常青,邱六,关雪飞. PREP法制备球形CuAl10Fe3铜合金粉末的性能表征[J]. 材料导报, 2019, 33(22): 3783-3788.
[6] 陈景民,李久盛,陈晋阳,曾祥琼. 模拟人体皮肤湿度响应特征和力学性质的皮肤模型[J]. 材料导报, 2019, 33(22): 3829-3832.
[7] 聂光临, 包亦望, 田远, 万德田. 水泥砂浆弹性模量随温度的演化规律[J]. 材料导报, 2019, 33(2): 251-256.
[8] 刘律宏, 刘燕萍, 马晋遥, 桑利军, 程晓鹏, 张跃飞. 利用原位压痕技术表征原子层沉积Al2O3超薄纳米薄膜的力学性能[J]. 材料导报, 2019, 33(18): 3026-3030.
[9] 杨世杰, 李元东, 曹驰, 董澎源, 李嘉铭, 李明. A356覆层温度对AZ31/A356轧制复合板界面组织及力学性能的影响[J]. 材料导报, 2019, 33(14): 2397-2402.
[10] 王月敏, 商磊, 闫相桥, 李新刚, 李垚. 基于纳米压痕技术的光子晶体薄膜实验研究与有限元模拟[J]. 材料导报, 2019, 33(14): 2283-2286.
[11] 牟信妮, 卢立新, 李国辉. 基于灰关联熵理论的蜂窝纸板面内承载机理及性能影响分析[J]. 材料导报, 2019, 33(12): 2100-2106.
[12] 周谟金, 蒋业华, 卢德宏, 张孝足. B4C包覆ZTA颗粒增强铁基复合材料制备与性能[J]. 材料导报, 2018, 32(24): 4324-4328.
[13] 张广泰, 田虎学, 李宝元, 张继飞, 王玉喜. 钢-聚丙烯混杂纤维混凝土的抗盐冻性能[J]. 《材料导报》期刊社, 2018, 32(14): 2396-2399.
[14] 聂光临,包亦望,万德田,田远. 水泥基管材力学性能评价方法[J]. 《材料导报》期刊社, 2018, 32(12): 2072-2077.
[15] 王建祥,唐新军,何建新,张凌凯. 考虑多因素的浇筑式沥青混凝土动力特性研究[J]. 《材料导报》期刊社, 2018, 32(12): 2085-2090.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed