Please wait a minute...
材料导报  2020, Vol. 34 Issue (6): 6100-6104    https://doi.org/10.11896/cldb.19030073
  金属与金属基复合材料 |
变形温度对2A14铝合金组织与力学性能的影响
童灯亮1,2, 易幼平1,2,3, 黄始全2,3, 何海林1,2, 郭万富1,2, 王并乡2,3
1 中南大学轻合金研究院,长沙 410083;
2 中南大学高性能复杂制造国家重点实验室,长沙 410083;
3 中南大学机电工程学院,长沙 410083
Effects of Deformation Temperature on Microstructure and Mechanical Properties of 2A14 Aluminum Alloy
TONG Dengliang1,2, YI Youping1,2,3, HUANG Shiquan2,3, HE Hailin1,2, GUO Wanfu1,2, WANG Bingxiang2,3
1 Light Alloy Research Institute, Central South University, Changsha 410083, China;
2 State Key Laboratory of High Performance Complex Manufacturing, Central South University, Changsha 410083, China;
3 School of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
下载:  全 文 ( PDF ) ( 7560KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 针对大型2A14铝合金高筒件制造存在的粗大晶粒与第二相聚集等问题,本研究提出一种高筒件中温轧制新工艺。借助金相显微镜(OM)、扫描电镜(SEM)、透射电镜(TEM)与拉伸测试等手段研究了热轧与中温轧制对2A14铝合金组织与力学性能的影响。结果表明:相较于480℃热轧,2A14铝合金在200℃下进行中温轧制并结合热处理可显著提升其综合力学性能,其抗拉强度、屈服强度、延伸率分别达到464MPa、386MPa、9.3%。中温轧制以高密度位错形式累积大量存储能,提高了固溶过程的再结晶形核率,使晶粒显著细化;同时,中温轧制协同热处理使合金中粗大第二相化合物充分破碎与溶解,改善了其在基体中的不均匀分布,并促进了2A14铝合金主要强化相S′相的析出。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
童灯亮
易幼平
黄始全
何海林
郭万富
王并乡
关键词:  2A14铝合金  变形温度  中温轧制  位错  第二相  力学性能    
Abstract: Aiming at the problems of coarse grains and second phase aggregation in the manufacture of large 2A14 aluminium alloy high cylinder parts, a new warm rolling process for high cylinder parts was proposed in this paper. The effects of hot and warm rolling on the microstructure and mechanical properties of 2A14 aluminum alloy were studied by using optical microscope (OM), scanning electronic microscopy (SEM), transmission electron microscopy (TEM) and tensile test. The results show that the comprehensive mechanical properties of 2A14 aluminium alloy can be significantly improved by warm rolling at 200 ℃ combined with heat treatment compared with that of hot rolling at 480 ℃. The tensile strength, yield strength and elongation of 2A14 aluminum alloy can reach 464 MPa, 386 MPa and 9.3%, respectively. A large amount of storage energy accumulated in the form of high density dislocation during warm rolling promotes the nucleation rate of recrystallization during solution process and refines dramaticly grain size. Meanwhile, warm rolling combined with heat treatment can fully break up and dissolve the coarse second-phase compounds in the alloy, improve their non-uniform distribution in the matrix, and promote the precipitation of S′ phase, the main strengthening phase of 2A14 aluminum alloy.
Key words:  2A14 aluminum alloy    deformation temperature    warm rolling    dislocation    second-phase    mechanical properties
                    发布日期:  2020-03-12
ZTFLH:  TG146.2  
基金资助: 战略火箭创新基金(Y18122);国家自然科学基金(51875583);高性能复杂制造国家重点实验室基金(ZZYJKT2018-03)
作者简介:  童灯亮,生于1995年,中南大学轻合金研究院机械工程专业,硕士研究生。主要从事铝合金锻件成型工艺研究;易幼平,中南大学机电工程学院教授,博士研究生导师。主要从事航空、航天轻合金构件成形工艺与模具、热处理工艺与装备等方向的研究。
引用本文:    
童灯亮, 易幼平, 黄始全, 何海林, 郭万富, 王并乡. 变形温度对2A14铝合金组织与力学性能的影响[J]. 材料导报, 2020, 34(6): 6100-6104.
TONG Dengliang, YI Youping, HUANG Shiquan, HE Hailin, GUO Wanfu, WANG Bingxiang. Effects of Deformation Temperature on Microstructure and Mechanical Properties of 2A14 Aluminum Alloy. Materials Reports, 2020, 34(6): 6100-6104.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19030073  或          http://www.mater-rep.com/CN/Y2020/V34/I6/6100
1 Shao S G, Yang Z X, Xing G N, et al. Astronautical Systems Eingeering Technology, 2017, 1 (3), 24 (in Chinese).
邵世刚, 杨泽萱, 邢冠楠, 等. 宇航总体技术, 2017, 1 (3), 24.
2 Wang J, Lu Y L, Zhou D S, et al. Heat Treatment of Metals, 2018, 43 (1), 231 (in Chinese).
王健, 卢雅琳, 周东帅, 等. 金属热处理, 2018, 43 (1), 231.
3 Zhou Y H, Zhang Y L, Jing T, et al. Journal of Projectiles, Rockets, Missiles and Guidance, 2013, 33 (6), 46 (in Chinese).
周喻虹, 张永利, 景涛, 等. 弹箭与制导学报, 2013, 33 (6), 46.
4 Luo C Y, Zhang P, Li W D, et al. Aeronautical Science and Technology, 2017, 28 (1), 19 (in Chinese).
罗楚养, 张朋, 李伟东, 等. 航空科学技术, 2017, 28 (1), 19.
5 Shaterani P, Zarei-Hanzaki A, Fatemi-Varzaneh S M, et al. Materials and Design, 2014, 58, 535.
6 Li R Q, Liu Z L, Dong F, et al. Metallurgical and Materials Transactions A, 2016, 47 (8), 3791.
7 Wang H M, Yi Y P, Huang S Q. Journal of Alloys and Compounds, 2016, 685,941.
8 Mei L. Study of cryogenic thermo-mechanical treatment behavior of 6016 aluminium alloy. Master's Thesis, Chongqing University, China, 2015 (in Chinese).
梅霖. 6016铝合金低温形变热处理行为的研究. 硕士学位论文, 重庆大学, 2015.
9 Cui X W, Xu X F, Ning Y H, et al. Materials Research B: Research Papers, 2017, 31 (7), 90 (in Chinese).
崔歆炜, 徐晓峰, 宁玉恒, 等. 材料导报:研究篇, 2017, 31 (7), 90.
10 Guo S M. Effect of cold deformation and aging on microstructures and mechanical properties of 2219 aluminum alloy. Master's Thesis, Dalian University of Technology, China, 2017 (in Chinese).
郭素墨. 冷变形及时效对 2219铝合金组织和力学性能的影响研究. 硕士学位论文, 大连理工大学, 2017.
11 Hussain M, Rao P N, Jayaganthan R, et al. Metallography Microstructure and Analysis, 2015, 3, 225.
12 Hei H L, Yi Y P, Huang S Q, et al. Materials Characterization, 2018, 135, 22.
13 Liu X Y, Wang Z P, Li Q S, et al. Journal of Central South University, 2017, 5, 1028.
14 Lu Y L, Wang J, Li X C, et al. Journal of Alloys and Compounds, 2017, 699, 1142.
15 Joshi A, Kumar N, Yogesha K K, et al. Journal of Materials Engineering and Performance, 2016, 7, 3035.
16 Hei H L, Yi Y P, Huang S Q, et al. Materials Science and Engineering A, 2018, 712, 417.
17 Hei H L, Yi Y P, Huang S Q, et al. Journal of Materials Science and Technology, 2019, 35, 58.
18 Wen B Q, Wang B, Lu X C. Handbook of metal materials, Electronic Industry Press, China, 2013 (in Chinese).
温秉权, 王宾, 路学成. 金属材料手册,电子工业出版社, 2013.
19 Meng F X. The aging behavior and mechanical properties of deformed 2A14 aluminium alloys. Master's Thesis, Harbin Institute of Technology, China, 2013 (in Chinese).
孟富新. 形变 2A14 铝合金的时效析出行为和力学性能. 硕士学位论文, 哈尔滨工业大学, 2013.
20 Ji Y, Li D J, Zeng X Q, et al. Journal of Materials Sciences and Engineering, 2018, 36 (1), 20 (in Chinese).
季芸, 李德江, 曾小勤, 等. 材料科学与工程学报, 2018, 36 (1), 20.
21 Zhu A W, Starke E A. Acta Materialia, 1999, 47 (11), 3269.
[1] 袁小亚, 彭一豪, 孙立涛, 郑旭煦, 秦泽海. 热还原氧化石墨烯在水泥水化介质中的分散及其增强砂浆的性能与机理研究[J]. 材料导报, 2020, 34(6): 6075-6080.
[2] 蔺宏涛, 孟强, 王怡嵩, 王家毅, 张韵, 江海涛. 旋转速度对高强度钢Q&P980搅拌摩擦焊接头组织与性能的影响[J]. 材料导报, 2020, 34(6): 6126-6131.
[3] 陈国庆, 张戈, 尹乾兴, 张秉刚, 冯吉才. TiAl合金焊接裂纹控制研究进展[J]. 材料导报, 2020, 34(5): 5115-5119.
[4] 谭雅琴, 王晓明, 朱胜, 乔珺威. 高熵合金强韧化的研究进展[J]. 材料导报, 2020, 34(5): 5120-5126.
[5] 贾宝华, 刘翔, 顾永强, 李革. Yb2O3对Ti-1100铸态合金高温力学性能的影响[J]. 材料导报, 2020, 34(4): 4087-4092.
[6] 罗兵兵, 张华, 雷敏, 冯艳, 许兰锋, 刘定军. 汽车6016铝合金/低碳钢激光焊接头界面组织与性能[J]. 材料导报, 2020, 34(4): 4108-4112.
[7] 陈林, 刘虹财, 严磊, 郭怡, 林宏, 蔺海兰, 卞军, 赵新为. 碳纳米管功能化改性聚偏氟乙烯介电复合材料的结构及性能[J]. 材料导报, 2020, 34(4): 4126-4131.
[8] 张恒, 周玉惠, 张飞, 龚维, 何力. 聚丙烯/β-环糊精复合材料发泡性能及力学性能的研究[J]. 材料导报, 2020, 34(4): 4148-4152.
[9] 杨玉明, 李伟, 刘平, 张柯, 马凤仓, 刘新宽, 陈小红, 何代华. 碳化硅掺杂Ni-P-PTFE复合涂层的微观结构和力学性能[J]. 材料导报, 2020, 34(4): 4153-4157.
[10] 房延凤,王丹,王晴,孔靖勋,常钧. 碳酸化钢渣及其在建筑材料中的应用现状[J]. 材料导报, 2020, 34(3): 3126-3132.
[11] 刘轩之,顾开选 ,翁泽钜,王凯凯,崔晨,郭嘉,王俊杰. 铝合金深冷处理研究进展[J]. 材料导报, 2020, 34(3): 3172-3177.
[12] 王文权, 李雅倩, 李欣, 刘亮, 陈飞. 选区激光熔化制备Ni-Cr-B-Si合金粉末的微观组织与性能[J]. 材料导报, 2020, 34(2): 2077-2082.
[13] 袁玖玮, 徐建明, 周罗增, 张玉凤, 张嘉颖, 张晓娟, 周文礼, 彭里其, 徐燕, 高湉. 高温超导块材第二相掺杂的研究进展[J]. 材料导报, 2019, 33(Z2): 65-69.
[14] 王海风, 王若轩, 董云谷, 刘鑫. 溶胶-凝胶法制备Eun+x∶SiO2薄膜及其性能研究[J]. 材料导报, 2019, 33(Z2): 165-168.
[15] 王林, 王梦尧, 王佩勋, 卢京宇. 偶联剂改性玄武岩纤维增强水泥基复合材料力学性能[J]. 材料导报, 2019, 33(Z2): 273-277.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed