Please wait a minute...
材料导报  2019, Vol. 33 Issue (Z2): 56-60    
  无机非金属及其复合材料 |
退火工艺对磁控溅射生长的Pt薄膜微观结构及电性能的影响
汪国军1,2, 白煜2, 胡少杰1, 张敏2, 王书蓓2, 万飞2
1 西安交通大学金属材料强度国家重点实验室,西安 710049;
2 西安交通大学苏州研究院,苏州 215123
Effect of Annealing Process on Microstructure and Electrical Properties ofPlatinum Films Grown by Magnetron Sputtering
WANG Guojun1,2, BAI Yu2, HU Shaojie1, ZHANG Min2, WANG Shubei2, WAN Fei2
1 State Key Laboratory for Mechanical Behaviour of Materials, Xi’an Jiaotong University, Xi’an 710049;
2 Xi’an Jiaotong University Suzhou Academy, Suzhou 215123
下载:  全 文 ( PDF ) ( 2707KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 铂(Pt)是温度传感器常见的敏感材料。为了改善退火工艺提高Pt薄膜的电学特性,采用射频磁控溅射法在蓝宝石衬底上制备了以钽(Ta)为粘附层的Pt敏感薄膜,研究了不同退火温度、退火气氛和退火时间下的Pt薄膜结构以及电学性能方面的差异。结果表明:退火增强了薄膜的结晶化且使晶粒发生长大,从而有效降低了薄膜的电阻率。但过度退火,如退火温度超过1 000 ℃或过长的退火时间,会导致粘附层中的Ta元素向Pt薄膜中过度扩散,从而增加Pt薄膜的电阻率。在高纯N2(99.999%)、超纯N2(99.999 9%)及空气三种气氛中退火,结果发现在空气中退火的Pt薄膜电阻率最小,原因是空气中的氧元素在高温下穿过Pt薄膜扩散至Ta粘附层,形成了稳定的Ta2O5相,Ta元素向Pt薄膜的扩散减少。退火还提升了薄膜电阻随温度变化的线性度及其电阻温度系数(TCR),在空气中900 ℃退火1 h,Pt薄膜的TCR达到3.909×10-3/℃,接近于块状Pt材料的值。此结果对提高Pt薄膜温度传感器的灵敏度具有重要意义。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
汪国军
白煜
胡少杰
张敏
王书蓓
万飞
关键词:  铂薄膜  磁控溅射  退火  电阻率  电阻温度系数(TCR)    
Abstract: Platinum (Pt) is a common sensitive material for temperature sensors. In order to improve the electrical properties of Pt films, the effect of annealing was studied. Pt films with tantalum (Ta) adhesion layer were grown on sapphire substrates by RF magnetron sputtering. The diffe-rences in microstructure and electrical properties of the Pt films with different annealing parameters, including temperature, atmosphere and time were investigated. The results show that annealing improves crystallization of the film and causes grain growth, which effectively reduces the resistivity of the film. However, excessive annealing, such as temperature above 1 000 ℃ or long annealing time, may cause excessive diffusion of Ta into the Pt film, thereby increasing the resistivity of the Pt film. Compared to Pt films annealed in high purity N2 (99.999%) or ultrapure N2 (99.999 9%), Pt films annealed in air have the lowest resistivity. The reason is that oxygen in the air diffuses through the Pt film to the Ta adhesion layer during annealing, forming stable Ta2O5, thus reducing the diffusion of Ta into the Pt film. Annealing also increases the linearity of the change in Pt film resistance with temperature, and the temperature coefficient of resistance (TCR) of the film. The TCR of the film annealed at 900 ℃ for 1 hour in air is 3.909×10-3/℃, very close to the value of the bulk platinum. This result is important for improving the sensitivity of the Pt film temperature sensor.
Key words:  platinum film    magnetron sputtering    annealing    resistivity    temperature coefficient of resistance (TCR)
               出版日期:  2019-11-25      发布日期:  2019-11-25
ZTFLH:  TB43  
  TB31  
基金资助: 国家自然科学基金青年科学基金(21805221);江苏省自然科学基金(BK20160389);苏州市重点产业技术创新(前瞻性应用研究)项目(SYG201832)
通讯作者:  ybai@xjtu.edu.cn   
作者简介:  汪国军,1994年生,2017年于安徽大学获得材料化学专业学士学位,现为西安交通大学在读硕士,研究方向MEMS压力传感器功能薄膜材料与器件。
白煜,1980年生,2011年于麻省理工学院获得材料科学与工程专业博士学位,现为西安交通大学副教授,研究方向为半导体薄膜材料及微纳传感器件等。
引用本文:    
汪国军, 白煜, 胡少杰, 张敏, 王书蓓, 万飞. 退火工艺对磁控溅射生长的Pt薄膜微观结构及电性能的影响[J]. 材料导报, 2019, 33(Z2): 56-60.
WANG Guojun, BAI Yu, HU Shaojie, ZHANG Min, WANG Shubei, WAN Fei. Effect of Annealing Process on Microstructure and Electrical Properties ofPlatinum Films Grown by Magnetron Sputtering. Materials Reports, 2019, 33(Z2): 56-60.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2019/V33/IZ2/56
1 张以忱,巴德纯,刘希东,等.真空科学与技术,2003,23(5),334.
2 王小军,李义兵,周继承.材料导报,2005,19(4),67.
3 Resnik D, Vrtacnik D, Aljancic U, et al. In: 35th Annual Conference of the IEEE-Industrial-Electronics-Society. Porto,2009,pp.3813.
4 Clayton W A. IEEE Transactions on Industry Applications,1988,24(2),332.
5 Resnik D, Vrtacnik D, Mozek M, et al. Journal of Micromechanics and Microengineering,2011,21(2),025025.
6 Kang J, Park J S, Park K B, et al. Micro and Nano Systems Letters,2017,5(1),26.
7 Tiggelaar R M, Sanders R G P, Groenland A W, et al. Sensors and Actua-tors A: Physical,2009,152(1),39.
8 Tsutsumi K, Yamashita A, Ohji H. In: Proceedings of IEEE SENSORS 2002. Orlando,2002,pp.1002.
9 Han J, Cheng P, Wang H, et al. Materials Letters,2014,125,224.
10 Hotový I, Haščík Š, Predanocy M, et al. In: 11th International Confe-rence on Advanced Semiconductor Devices & Microsystems (ASDAM). Smolenice,2016,pp.85.
11 Yi F, Osborn W, Betz J, et al. Journal of Microelectromechanical Systems,2015,24(4),1185.
12 江民红,顾正飞,刘心宇,等.微细加工技术,2006,24(2),33.
13 江炳尧,蒋军,冯涛,等.功能材料,2004(6),774.
14 周鸿仁,刘秀蓉,徐蓓娜.电子科技大学学报,1997,26(6),662.
15 赵永,简维廷,张荣哲.中国集成电路,2009,18(3),62.
[1] 李红,邢增程,Erika Hodúlová,胡安明,Wolfgang Tillmann. 退火处理工艺在纳米多层膜材料研究中的应用进展[J]. 材料导报, 2020, 34(3): 3099-3105.
[2] 张国忠,李艳辉,吴立成,张伟. Fe基纳米晶软磁合金退火脆性的研究进展[J]. 材料导报, 2020, 34(3): 3165-3171.
[3] 吴珊妮, 赵远, 姜宏, 文峰, 熊春荣. 具有优良隔热和力学性能的低热导率W/Al2O3纳米多层功能膜的构建[J]. 材料导报, 2020, 34(2): 2023-2028.
[4] 赵笑昆, 李博研, 张增光. 磁控溅射沉积制备Al掺杂ZnO薄膜的棒状晶粒生长[J]. 材料导报, 2019, 33(z1): 112-115.
[5] 廖宜顺, 沈晴, 徐鹏飞, 廖国胜, 钟侚. 粉煤灰对水泥基材料水化过程电阻率的影响研究[J]. 材料导报, 2019, 33(8): 1335-1339.
[6] 何承绪, 涂蕴超, 孟利, 杨富尧, 刘洋, 马光, 韩钰, 陈新. 超薄取向硅钢组织及织构与磁性能的关系[J]. 材料导报, 2019, 33(6): 1027-1031.
[7] 周超, 李得天, 周晖, 张凯锋, 曹生珠. MEMS器件真空封装用非蒸散型吸气剂薄膜研究概述[J]. 材料导报, 2019, 33(3): 438-443.
[8] 季鑫, 张朝民. CIGS叠层太阳能电池的中间层及稳定性的研究进展[J]. 材料导报, 2019, 33(23): 3915-3920.
[9] 杨秀钰, 陈诺夫, 张航, 陶泉丽, 徐甲然, 陈梦, 陈吉堃. 对非晶硅薄膜进行快速磷扩散以获得本征薄层异质结[J]. 材料导报, 2019, 33(20): 3353-3357.
[10] 周宏明, 王博益, 李荐, 程名辉. CuO掺杂对钇钡铜氧陶瓷电性能的影响[J]. 材料导报, 2019, 33(2): 220-224.
[11] 王子博, 刘满平, 姜奎, 秦希, 章勇, 王圣楠, 陈健. 退火时间对高压扭转Al-1.0Mg铝合金组织及性能的影响[J]. 材料导报, 2019, 33(2): 321-324.
[12] 孙科学, 常月欣, 成谢锋. xBiInO3-(1-x)PbTiO3薄膜的横向压电特性[J]. 材料导报, 2019, 33(14): 2299-2304.
[13] 刘仪柯, 唐雅琴, 蒋良兴, 刘芳洋, 秦 勤, 张 坤. 溅射Cu-Zn-Sn金属预制层后硫(硒)化法制备Cu2ZnSn(SxSe1-x)4薄膜及其光伏特性[J]. 《材料导报》期刊社, 2018, 32(9): 1412-1416.
[14] 山世浩, 王庆国, 曲兆明, 成伟, 李昂. 二氧化钒薄膜材料相变临界场强调控方法研究[J]. 材料导报, 2018, 32(6): 870-873.
[15] 白园蕊, 马建中, 刘俊莉, 鲍艳, 崔万照, 胡天存, 吴朵朵. 基于胶体晶体构筑银纳米薄膜及其抑制微放电性能研究[J]. 《材料导报》期刊社, 2018, 32(4): 515-519.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[4] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] WANG Wenjin, WANG Keqiang, YE Shenjie, MIAO Weijun, CHEN Zhongren. Effect of Asymmetric Block Copolymer of PI-b-PB on Phase Morphology and Properties of IR/BR Blends[J]. Materials Reports, 2017, 31(2): 96 -100 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] WU Tao, MAO Lili, WANG Haizeng. Preparation and Defluoridation Performance of Mg/Fe-LDHO/PES Membranous Adsorbent[J]. Materials Reports, 2017, 31(14): 26 -30 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed