Please wait a minute...
材料导报  2024, Vol. 38 Issue (13): 22110120-16    https://doi.org/10.11896/cldb.22110120
  无机非金属及其复合材料 |
高效太阳能驱动海水淡化的最新研究进展
李雪1, 周明宇2, 韩朋1, 戚桂村1, 高达利1, 陶胜洋2, 王玉超2,*
1 中国石油化工股份有限公司北京化工研究院,北京 100013
2 大连理工大学化学学院,辽宁 大连116024
Recent Research Advances in Efficient Solar-driven Desalination
LI Xue1, ZHOU Mingyu2, HAN Peng1, QI Guicun1, GAO Dali1, TAO Shengyang2, WANG Yuchao2,*
1 Beijing Research Institute of Chemical Industry, China Petroleum & Chemical Corporation, Beijing 100013, China
2 School of Chemistry, Dalian University of Technology, Dalian 116024, Liaoning, China
下载:  全 文 ( PDF ) ( 67075KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 由于淡水资源时空分布的不均一性,部分国家和地区的发展严重受制于淡水资源短缺,海水淡化已成为沿海地区应对淡水紧张问题的重要途径。受自然界水循环启发,利用太阳能驱动水蒸发,直接从海水中分离出清洁水,是一种可持续的低成本海水淡化技术。针对传统太阳能蒸发较低的能量利用率和蒸发效率,研究人员基于界面蒸发基本理论,利用光热转化材料选择性地加热空气-水界面,以提高太阳能利用率。本文结合前沿的工作介绍了实现高效太阳能驱动界面水蒸发的关键因素,概述了已报道的常用光热材料,讨论了光热蒸发器结构设计对体系能量管理和物质传输的调控,分析质能传递过程对蒸发系统性能的影响。除此之外,本文对长时间海水蒸发过程中盐析出污染问题及其应对策略进行了综述,最后探讨了目前太阳能界面蒸发面临的挑战并展望了其在海水淡化应用的发展前景。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李雪
周明宇
韩朋
戚桂村
高达利
陶胜洋
王玉超
关键词:  界面蒸发  太阳能  光热材料  光热蒸发器  海水淡化    
Abstract: Owing to uneven distribution of freshwater resources in time and space, water scarcity significantly constrains the development of several countries and regions globally. In coastal areas, desalination is an essential approach to compensating freshwater scarcity. Inspired by the natural water cycle, solar-driven water evaporation is considered a sustainable and low-cost desalination technology because of its ability to directly separate freshwater from seawater under solar irradiation. Despite the lower energy utilization and evaporation efficiency of conventional evaporation, researchers employ photothermal materials for centralized heating of the air-water interface to improve solar energy utilization based on the interfacial evaporation theory. In this review, the critical factors for efficient solar-driven interfacial evaporation are introduced based on state-of-the-art studies. We systematically summarize general photothermal materials identified in previous references, as well as the advanced structural design of photothermal evaporators for outstanding system energy management and mass-transfer regulation. The mass-energy-transfer process of evaporation systems is further analyzed to illustrate its impact on performance. In addition, the issues encountered during long-term solar desalination, e.g., salt precipitation, and corresponding solution strategies are compared and discussed.Finally, we explore the challenges facing solar-driven interfacial evaporation and the prospects for its development in desalination applications.
Key words:  interfacial evaporation    solar energy    photothermal materials    photothermal evaporators    seawater desalination
出版日期:  2024-07-10      发布日期:  2024-08-01
ZTFLH:  O647  
基金资助: 辽宁省自然科学基金计划(2022-MS-143);大连市科技创新基金项目(2022JJ13SN098)
通讯作者:  *王玉超,大连理工大学副教授。2009年6月青岛大学化学专业毕业,获得理学学士学位,2014年10月大连理工大学无机化学专业毕业,获得博士学位。先后于沙特KASUT和中国科学院青岛生物能源与过程研究所工作,2020年入职大连理工大学工作至今。目前主要从事能源与环境领域功能材料的开发及应用基础研究。发表SCI学术论文30余篇,包括Environmental Science & Technology、Nano Energy、Journal of Materials Chemistry A等。wangyuchao@dlut.edu.cn   
作者简介:  李雪,中国石油化工股份有限公司北京化工研究院生产技术研究所高级工程师。2001年6月大连理工大学化学工程专业毕业,获得工学学士学位,2004年6月大连理工大学高分子材料专业毕业,获得工学硕士学位。2004年到中国石油化工股份有限公司北京化工研究院工作至今,目前主要从事化工工艺开发、工程设计等方面的研究工作。
引用本文:    
李雪, 周明宇, 韩朋, 戚桂村, 高达利, 陶胜洋, 王玉超. 高效太阳能驱动海水淡化的最新研究进展[J]. 材料导报, 2024, 38(13): 22110120-16.
LI Xue, ZHOU Mingyu, HAN Peng, QI Guicun, GAO Dali, TAO Shengyang, WANG Yuchao. Recent Research Advances in Efficient Solar-driven Desalination. Materials Reports, 2024, 38(13): 22110120-16.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22110120  或          http://www.mater-rep.com/CN/Y2024/V38/I13/22110120
1 Nagar A, Pradeep T. ACS Nano, 2020, 14(6), 6420.
2 Ahmed F E, Hashaikeh R, Hilal N. Desalination, 2019, 453, 54.
3 Wang W, Shi Y, Zhang C, et al. Nano Letters, 2021, 21(12), 5068.
4 Al-Amshawee S, Yunus M Y B M, Azoddein A A M, et al. Chemical Engineering Journal, 2020, 380, 122231.
5 Ghazi Z M, Rizvi S W F, Shahid W M, et al. Desalination, 2022, 542, 116063.
6 Chen C, Kuang Y, Hu L. Joule, 2019, 3(3), 683.
7 Liu H, Huang Z, Liu K, et al. Advanced Energy Materials, 2019, 9(21), 1900310.
8 Wu X, Chen G Y, Owens G, et al. Materials Today Energy, 2019, 12, 277.
9 Zhao F, Guo Y, Zhou X, et al. Nature Reviews Materials, 2020, 5(5), 388.
10 Gao M, Zhu L, Peh C K, et al. Energy & Environmental Science, 2019, 12(3), 841.
11 Tao P, Ni G, Song C, et al. Nature Energy, 2018, 3(12), 1031.
12 Zhang L, Xu Z, Zhao L, et al. Energy & Environmental Science, 2021, 14(4), 1771.
13 Zhou X, Zhao F, Zhang P, et al. ACS Materials Letters, 2021, 3(8), 1112.
14 Zhang Y, Xiong T, Nandakumar D K, et al. Advanced Science, 2020, 7(9), 1903478.
15 Wei Z, Wang J, Guo S, et al. Nano Research Energy, 2022, 1(2), 9120014.
16 Zhao F, Zhou X, Shi Y, et al. Natuere Nanotechnology, 2018, 13(6), 489.
17 Sharshir S W, Algazzar A M, Elmaadawy K A, et al. Desalination, 2020, 491, 114564.
18 Seh Z W, Liu S, Low M, et al. Advanced Materials, 2012, 24(17), 2310.
19 Hessel C M, Pattani V P, Rasch M, et al. Nano Letters, 2011, 11(6), 2560.
20 Ghasemi H, Ni G, Marconnet A M, et al. Nature Communiactions, 2014, 5, 4449.
21 Zhou L, Tan Y, Ji D, et al. Science Advances, 2016, 2(4), 1501227.
22 Ji M, Liu H, Cheng M, et al. The Journal of Physical Chemistry C, 2022, 126(5), 2454.
23 Ye M, Jia J, Wu Z, et al. Advanced Energy Materials, 2017, 7(4), 1601811.
24 Chen X, Meng C, Wang Y, et al. ACS Sustainable Chemistry & Engineering, 2020, 8(2), 1095.
25 Zhang Q, Xiao X, Zhao G, et al. Journal of Materials Chemistry A, 2021, 9(17), 10945.
26 Yin Z, Wang H, Jian M, et al. ACS Applied Materials & Interfaces, 2017, 9(34), 28596.
27 Geng X, Zhang D, Zheng Z, et al. Nano Energy, 2021, 82, 105700.
28 Mascaretti L, Schirato A, Zboil R, et al. Nano Energy, 2021, 83, 105828.
29 Wang Z, Yu K, Gong S, et al. ACS Applied Materials & Interfaces, 2021, 13(14), 16246.
30 Tian L, Luan J, Liu K K, et al. Nano Letters, 2016, 16(1), 609.
31 Chen J, Feng J, Li Z, et al. Nano Letters, 2019, 19(1), 400.
32 Fan P, Wu H, Zhong M, et al. Nanoscale, 2016, 8(30), 14617.
33 Zhou L, Tan Y, Wang J, et al. Nature Photonics, 2016, 10(6), 393.
34 Liu Z, Song H, Ji D, et al. Global Challenges, 2017, 1(2), 1600003.
35 Zhu H W, Ge J, Zhao H Y, et al. Science China Materials, 2020, 63(10), 1957.
36 Hu Y, Ma H, Wu M, et al. Nature Communiactions, 2022, 13(1), 4335.
37 Shi Y, Li R, Shi L, et al. Advanced Sustainable Systems, 2018, 2(3), 1700145.
38 Xu D, Li Z, Li L, et al. Advanced Functional Materials, 2020, 30(47), 2000712.
39 Sun X, Jia X, Yang J, et al. Solar RRL, 2022, 6(2), 2100888.
40 Lei Z, Sun X, Zhu S, et al. Nano-micro Letters, 2021, 14(1), 10.
41 Zhou B, Song J, Wang B, et al. Nano Research, 2022, 15(10), 9520.
42 Xu Y, Li C, Wu X, et al. Journal of the American Chemical Society, 2022, 144(41), 18834.
43 Guan W, Guo Y, Yu G. Small, 2021, 17(48), 2007176.
44 Cao S, Jiang Q, Wu X, et al. Journal of Materials Chemistry A, 2019, 7(42), 24092.
45 Bu Y, Zhou Y, Lei W, et al. Journal of Materials Chemistry A, 2022, 10(6), 2856.
46 Hu Y, Yao H, Liao Q, et al. EcoMat, 2022, 4(5), 12205.
47 Li W, Li X, Liu J, et al. ACS Applied Materials & Interfaces, 2021, 13(19), 22845.
48 Cheng Y, Cheng S, Chen B, et al. Journal of the American Chemical Society, 2022, 144(34), 15562.
49 Liu H, Huang G, Wang R, et al. ACS Applied Materials & Interfaces, 2022, 14(28), 32404.
50 Ibrahim I, Bhoopal V, Seo D H, et al. Materials Today Energy, 2021, 21, 100716.
51 Xue G, Liu K, Chen Q, et al. ACS Applied Materials & Interfaces, 2017, 9(17), 15052.
52 Zhu M, Yu J, Ma C, et al. Solar Energy Materials and Solar Cells, 2019, 191, 83.
53 Xu N, Hu X, Xu W, et al. Advanced Materials, 2017, 29(28), 1606762.
54 Chen T, Xie H, Qiao X, et al. ACS Applied Materials & Interfaces, 2020, 12(45), 50397.
55 Zafar M S, Zahid M, Athanassiou A, et al. Advanced Sustainable Systems, 2021, 5(8), 2100031.
56 Sun P, Zhang W, Zada I, et al. ACS Applied Materials & Interfaces, 2020, 12(2), 2171.
57 Fang J, Liu J, Gu J, et al. Chemistry of Materials, 2018, 30(18), 6217.
58 Long Y, Huang S, Yi H, et al. Journal of Materials Chemistry A, 2019, 7(47), 26911.
59 Zhang H, Li L, Jiang B, et al. ACS Applied Materials & Interfaces, 2020, 12(14), 16503.
60 Choi J, Lee H, Sohn B, et al. Scientific Reports, 2021, 11(1), 16811.
61 Zhao X, Zha X J, Tang L S, et al. Nano Research, 2020, 13(1), 255.
62 Li R, Wang Z, Tao X, et al. Polymer Chemistry, 2021, 12(22), 3233.
63 Xiao L, Chen X, Yang X, et al. ACS Applied Polymer Materials, 2020, 2(10), 4273.
64 Zou Y, Chen X, Yang P, et al. Science Advances, 2020, 6(36), eabb4696.
65 Wang Y, Zhu W, Du W, et al. Angewandte Chemie International Edition, 2018, 57(15), 3963.
66 Lu B, Chen Y, Li P, et al. Nature Communiactions, 2019, 10(1), 767.
67 Wang C, Wang Y, Song X, et al. Advanced Sustainable Systems, 2019, 3(1), 1800108.
68 Li W, Li Z, Bertelsmann K, et al. Advanced Materials, 2019, 31(29), e1900720.
69 Zhou X, Guo Y, Zhao F, et al. Accounts of Chemical Research, 2019, 52(11), 3244.
70 Zhou X, Zhao F, Guo Y, et al. Science Advances, 2019, 5(6), eaaw5484.
71 Zhou X, Guo Y, Zhao F, et al. Advanced Materials, 2020, 32(52), e2007012.
72 Zhang Y S, Khademhosseini A. Science, 2017, 356(6337), aaf3627.
73 Li C, Zhu B, Liu Z, et al. Chemical Engineering Journal, 2022, 431(3), 134244.
74 Zhao L, Yang Z, Wang J, et al. Chemical Engineering Journal, 2023, 451(3), 138676.
75 Qiu Y, Zhou Z, Zhang C, et al. ACS Energy Letters, 2022, 7(10), 3476.
76 Zhang C, Liang H Q, Xu Z K, et al. Advanced Science, 2019, 6(18), 1900883.
77 Luo Y, Fu B, Shen Q, et al. ACS Applied Materials & Interfaces, 2019, 11(7), 7584.
78 Ni G, Li G, Boriskina S V, et al. Nature Energy, 2016, 1(9), 16126.
79 Gao X, Ren H, Zhou J, et al. Chemistry of Materials, 2017, 29(14), 5777.
80 Chen Z, Li Q, Chen X. ACS Sustainable Chemistry & Engineering, 2020, 8(36), 13850.
81 Wang Y, Wang C, Song X, et al. Journal of Materials Chemistry A, 2018, 6(3), 963.
82 Chaule S, Hwang J, Ha S J, et al. Advanced Materials, 2021, 33(38), e2102649.
83 He M, Dai H, Liu H, et al. ACS Applied Materials & Interfaces, 2021, 13(34), 40664.
84 Wang Y, Wang C, Song X, et al. Journal of Materials Chemistry A, 2018, 6(21), 9874.
85 Huang W, Hu G, Tian C, et al. Sustainable Energy & Fuels, 2019, 3(11), 3000.
86 Dong Y, Tan Y, Wang K, et al. Water Research, 2022, 223, 119011.
87 Shi Y, Li R, Jin Y, et al. Joule, 2018, 2(6), 1171.
88 Liu X, Mishra D D, Wang X, et al. Journal of Materials Chemistry A, 2020, 8(35), 17907.
89 Zhou L, Li X, Ni G W, et al. National Science Review, 2019, 6(3), 562.
90 Ito Y, Tanabe Y, Han J, et al. Advanced Materials, 2015, 27(29), 4302.
91 Li C, Jiang D, Huo B, et al. Nano Energy, 2019, 60, 841.
92 Li X, Xu W, Tang M, et al. Proceeding of the National Academy of Sciences of the United States of America, 2016, 113(49), 13953.
93 Soo J B, Soo K I, Ki H I, et al. Applied Surface Science, 2022, 583, 152563.
94 Liu Z, Yang Z, Huang X, et al. Journal of Materials Chemistry A, 2017, 5(37), 20044.
95 Li Y, Gao T, Yang Z, et al. Advanced Materials, 2017, 29(26), 1700981.
96 Dong X, Li H, Gao L, et al. Small, 2022, 18(13), e2107156.
97 Liu Z, Wu B, Zhu B, et al. Advanced Functional Materials, 2019, 29(43), 1905485.
98 Zhang P, Liao Q, Yao H, et al. Journal of Materials Chemistry A, 2018, 6(31), 15303.
99 Hong S, Shi Y, Li R, et al. ACS Applied Materials & Interfaces, 2018, 10(34), 28517.
100 Li X, Lin R, Ni G, et al. National Science Review, 2018, 5(1), 70.
101 Wu X, Wu Z, Wang Y, et al. Advanced Science, 2021, 8(7), 2002501.
102 Meng F, Ju B, Zhang S, et al. Journal of Materials Chemistry A, 2021, 9(24), 13746.
103 Anukunwithaya P, Koh J J, Chuan Yeo J C, et al. Journal of Materials Chemistry A, 2022, 10(29), 15743.
104 Finnerty C T K, Menon A K, Conway K M, et al. Environmental Science & Technology, 2021, 55(22), 15435.
105 Zhang C, Yuan B, Liang Y, et al. Solar Energy Materials and Solar Cells, 2021, 227, 111127.
106 Li X, Li J, Lu J, et al. Joule, 2018, 2(7), 1331.
107 Li J, Wang X, Lin Z, et al. Joule, 2020, 4(4), 928.
108 Wang Y, Wu X, Gao T, et al. Nano Energy, 2021, 79, 105477.
109 Pan Y, Li E, Wang Y, et al. Environmental Science & Technology, 2022, 56(16), 11818.
110 Shang M, Li N, Zhang S, et al. ACS Applied Energy Materials, 2017, 1(1), 56.
111 Lim H W, Lee S J. Desalination, 2022, 526, 115540.
112 Sun Y, Zhao Z, Zhao G, et al. Carbon, 2021, 179, 337.
113 Liu N, Hao L, Zhang B, et al. Energy & Environmental Materials, 2021, 5(2), 617.
114 Chen K, Li L, Zhang J. ACS Applied Materials & Interfaces, 2021, 13(49), 59518.
115 Gong F, Wang W, Li H, et al. Applied Energy, 2020, 261, 114410.
116 Li Y, Gao T, Yang Z, et al. Nano Energy, 2017, 41, 201.
117 Toksoz D, Yilmaz I. Geotechnical and Geological Engineering, 2019, 38(1), 813.
118 Xiong Z C, Zhu Y J, Qin D D, et al. ACS Applied Materials & Interfaces, 2020, 12(29), 32556.
119 Xu W, Hu X, Zhuang S, et al. Advanced Energy Materials, 2018, 8(14), 1702884.
120 Chen X, He S, Falinski M M, et al. Energy & Environmental Science, 2021, 14(10), 5347.
121 Li H N, Yang H C, Zhu C Y, et al. Journal of Materials Chemistry A, 2022, 10(39), 20856.
122 Xia Y, Kang Y, Wang Z, et al. Journal of Materials Chemistry A, 2021, 9(11), 6612.
123 Cao N, Lu S, Yao R, et al. Chemical Engineering Journal, 2020, 397, 125522.
124 Peng H, Wang D, Fu S. ACS Applied Materials & Interfaces, 2021, 13(40), 47549.
125 Li L, He N, Jiang B, et al. Advanced Functional Materials, 2021, 31(43), 2104380.
126 Zhang C, Shi Y, Shi L, et al. Nature Communiactions, 2021, 12(1), 998.
127 Wu L, Dong Z, Cai Z, et al. Nature Communiactions, 2020, 11(1), 521.
128 Wang Y, Wu X, Wu P, et al. Journal of Materials Chemistry A, 2022, 10(27), 14470.
129 Bian Y, Tang K, Tian L, et al. ACS Applied Materials & Interfaces, 2021, 13(4), 4935.
130 Sheng M, Yang Y, Bin X, et al. Nano Energy, 2021, 89, 106468.
131 Cooper T A, Zandavi S H, Ni G W, et al. Nature Communiactions, 2018, 9(1), 5086.
132 Menon A K, Haechler I, Kaur S, et al. Nature Sustainability, 2020, 3(2), 144.
133 Chen C, Wang M, Chen X, et al. Chemical Engineering Journal, 2022, 448, 137603.
134 Xu Y, Liu D, Xiang H, et al. Journal of Membrane Science, 2019, 586, 222.
135 Zhang D, Zhang M, Chen S, et al. Desalination, 2021, 500, 114899.
136 Kuang Y, Chen C, He S, et al. Advanced Materials, 2019, 31(23), e1900498.
137 Yuan P, Men C, Zhao L, et al. ACS Applied Materials & Interfaces, 2022, 14(13), 15549.
138 Chu A, Yang M, Yang H, et al. ACS Applied Materials & Interfaces, 2022, 14(31), 36116.
139 Liu X, Chen F, Li Y, et al. Advanced Materials, 2022, 34(36), e2203137.
140 Zhou X, Zhao F, Guo Y, et al. Energy & Environmental Science, 2018, 11(8), 1985.
141 Geddert T, Augustin W, Scholl S. Heat Transfer Engineering, 2011, 32(3-4), 300.
142 Morelos-Gomez A, Cruz-Silva R, Muramatsu H, et al. Nature Nanotechnology, 2017, 12(11), 1083.
143 Xu Z, Li Z, Jiang Y, et al. Journal of Materials Chemistry A, 2020, 8(48), 25571.
144 Dao V D, Vu N H, Yun S. Nano Energy, 2020, 68, 104324.
145 Moore G W K, Howell S E L, Brady M, et al. Nature Communiactions, 2021, 12(1), 1.
[1] 王正省, 任永生, 马文会, 吕国强, 曾毅, 詹曙, 陈辉, 王哲. 直拉法单晶硅生长原理、工艺及展望[J]. 材料导报, 2024, 38(9): 22100160-13.
[2] 郑惠文, 金宏璋, 徐炎, 闫磊, 王行柱. 不同取代基对联苯二酰亚胺基空穴传输材料光电性能的影响[J]. 材料导报, 2024, 38(8): 22120082-8.
[3] 杜一, 顾邦凯, 陈曦, 李夏冰, 卢豪. 埋底界面修饰对钙钛矿太阳能电池的影响[J]. 材料导报, 2024, 38(7): 22080111-10.
[4] 杨晨光, 王秀峰. 硅基SiC薄膜制备与应用研究进展[J]. 材料导报, 2024, 38(7): 23010118-14.
[5] 黎涛, 孟威明, 王丁丁, 卫春祥, 鲁红典. 多层结构聚丙烯酰胺水凝胶太阳能蒸发器的制备及性能[J]. 材料导报, 2024, 38(7): 22080085-5.
[6] 何敬敬, 王旭, 牛强. 钙钛矿量子点在光伏电池中的应用进展[J]. 材料导报, 2024, 38(10): 22110228-13.
[7] 王耀武, 王彬彬. 有机电子传输材料在反式钙钛矿太阳能电池中的研究现状[J]. 材料导报, 2024, 38(10): 22100210-11.
[8] 许兵, 姚兴洁, 刘佳, 张旭, 杨晓彤, 郭培勋, 张新玉. 面向太阳能界面蒸发的纳米光热材料与系统设计研究[J]. 材料导报, 2023, 37(S1): 23030028-8.
[9] 夏鹏, 傅萍, 黄金华, 李佳, 宋伟杰. 硅异质结太阳能电池用透明导电氧化物薄膜的研究现状及发展趋势[J]. 材料导报, 2023, 37(9): 22090082-9.
[10] 周文彩, 王伟, 刘晓鹏, 齐帅, 于浩, 曾红杰, 王川申, 魏晓俊. 透明太阳能电池的研究进展[J]. 材料导报, 2023, 37(8): 21060214-8.
[11] 成健, 廖建飞, 杨震, 孔维畅, 刘顿. 太阳能电池多晶硅表面激光制绒技术研究进展[J]. 材料导报, 2023, 37(6): 21050219-10.
[12] 金胜利, 寿春晖, 黄绵吉, 贺海晏, 李聪. 钙钛矿太阳能电池稳定性研究进展及模组产业化趋势[J]. 材料导报, 2023, 37(5): 21030201-13.
[13] 黄兵, 刘萍. 金属网格柔性透明导电薄膜研究进展[J]. 材料导报, 2023, 37(5): 21030214-12.
[14] 左夏华, 宋立健, 关昌峰, 阎华, 杨卫民, 安瑛. 用于直接吸收式太阳能集热器的纳米流体研究进展[J]. 材料导报, 2023, 37(21): 22050317-9.
[15] 赵春波, 赵嵘, 戚剑飞, 庄文博, 刘婕, 陈沛, 万艳芬, 杨鹏. 面向双碳目标的水淡技术:生物质碳用于界面太阳能光蒸汽转化技术的研究进展[J]. 材料导报, 2023, 37(12): 21110158-13.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed