Review of Application on Nanofluids for Direct Absorption Solar Collectors
ZUO Xiahua1, SONG Lijian1, GUAN Changfeng1, YAN Hua1, YANG Weimin1,2,*, AN Ying1,*
1 College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing 100029, China 2 State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
Abstract: Different from the traditional flat plate collector and vacuum tube collector, the direct absorption solar collector (DASC) is a new type of collector that directly absorbs solar radiation energy and converts it into heat. From the perspective of heat transfer, direct absorption solar collectors have excellent heat collection performance due to reducing the heat transfer loss between the absorbing surface and the collecting medium. However, traditional thermal fluids such as water, conduction oil, ethylene glycol and other organic solvent have limited ability to absorb solar energy. In recent years, nanofluids have been regarded as the best choice for direct absorption solar collectors due to their excellent heat transfer and optical properties. This paper introduces the heat transfer model of DASC, summarizes the research progress of nanofluids for DASC, and lists various representative nanofluids and related research on their photothermal conversion performance. Finally, the application of nanofluids in DASC is prospected.
通讯作者: *杨卫民,北京化工大学机电工程学院教授、博士研究生导师,教育部长江学者特聘教授。1987年北京化工大学机械系本科毕业,1990年北京化工大学机械系硕士毕业,后到北京化工大学工作至今,1998年北京化工大学机电工程学院化工过程机械专业博士毕业。目前主要针对高分子材料先进制造装备及新材料、工业节能与新能源等方面开展研究工作。发表论文600余篇,包括Applied Surface Science、International Journal of Heat and Mass Transfer、Solar Energy、Solar Energy Materials & Solar Cells等。yangwm@mail.buct.edu.cn 安瑛,北京化工大学机电工程学院副教授、硕士研究生导师。1989年北京化工大学机械系本科毕业,1995年北京化工大学机械系硕士毕业,后到北京化工大学工作至今,2011年北京化工大学机电工程学院化工过程机械设计及理论博士毕业。目前主要针对高分子材料先进制造装备及新材料、工业节能与新能源等方面开展研究工作。发表论文100余篇,包括Solar Energy、Solar Energy Materials & Solar Cells等。anying@mail.buct.edu.cn
左夏华, 宋立健, 关昌峰, 阎华, 杨卫民, 安瑛. 用于直接吸收式太阳能集热器的纳米流体研究进展[J]. 材料导报, 2023, 37(21): 22050317-9.
ZUO Xiahua, SONG Lijian, GUAN Changfeng, YAN Hua, YANG Weimin, AN Ying. Review of Application on Nanofluids for Direct Absorption Solar Collectors. Materials Reports, 2023, 37(21): 22050317-9.
1 Choi S U S, Eastman J A. In:1995 International mechanical engineering congress and exhibition. San Francisco, CA (United States), 1995. 2 Xu G Y, Chen W, Zhang X S, et al. Journal of Engineering Thermophysics, 2015, 36(5), 960(in Chinese). 徐国英, 陈伟, 张小松, 等. 工程热物理学报, 2015, 36(5), 960. 3 Gorji T B, Ranjbar A A. Renewable & Sustainable Energy Reviews, 2017, 72, 10. 4 Han X X. Effects of the suiface properties of nano-TiO2and suefactants on the physical properties of nanofluids. Ph. D. Thesis, North China Electric Power University(Beijing), China, 2019 (in Chinese). 韩晓雪. 纳米TiO2表面性质和表面活性剂对纳米流体物性的影响. 博士学位论文, 华北电力大学(北京), 2019. 5 Yu X, Hou Z J, Ye X J, et al. Journal of Wuhan University of Technology, 2019, 41(10), 7 (in Chinese). 余霞, 侯志坚, 叶晓江, 等. 武汉理工大学学报, 2019, 41(10), 7. 6 Li Z L. Solar water evaporation perperties of carbon-based nanofluids and interface matericals. Master's Thesis, Qingdao University of Science & Technology, China, 2020(in Chinese). 李振林. 碳基纳米流体及界面材料的太阳能水蒸发性能研究. 硕士学位论文, 青岛科技大学, 2020. 7 Zhang Z Y. Research on preparation of Silica nanofluid and relationship between stability and temperature. Master's Thesis, North China Electric Power University(Beijing), China, 2020 (in Chinese). 张哲旸. 二氧化硅纳米流体的制备及其稳定性与温度的关系研究. 硕士学位论文, 华北电力大学(北京), 2020. 8 Chen Z Z, Chen H Q, Huang L, et al. Chinese Journal of Engineering, 2022, 44(4), 812(in Chinese). 陈真真, 陈洪强 , 黄磊, 等. 工程科学学报, 2022, 44(4), 812. 9 Hong H X, Wu W D, Sheng W, et al. Chemical Industry and Enginee-ring Progress, 2008(12), 1923 (in Chinese). 洪欢喜, 武卫东, 盛伟, 等. 化工进展, 2008(12), 1923. 10 Hong H X, Wu W D, Sheng W, et al. In:The 5th National Seminar on new Technology of refrigeration and air Conditioning. Xiamen, China, 2008, pp. 382 (in Chinese). 洪欢喜, 武卫东, 盛伟, 等. 第五届全国制冷空调新技术研讨会. 厦门, 2008, pp. 382. 11 Yao Y, Lu Y, Lu Z N, et al. Fluid Machinery, 2016, 44(11), 41 (in Chinese). 姚远, 陈颖, 陆振能, 等. 流体机械, 2016, 44(11), 41. 12 Xuan Y M. Scientia Sinica(Technologica), 2014, 44(3), 269 (in Chinese). 宣益民. 中国科学:技术科学, 2014, 44(3), 269. 13 Said Z, Sundar L S, Tiwari A K, et al. Physics Reports, 2022, 946, 1. 14 Delfani S, Karami M, Akhavan-Behabadi M A. Renewable Energy, 2016, 87, 754. 15 Minardi J E, Chuang H N. Solar Energy, 1975, 17(3), 179. 16 Abdelrahman M, Fumeaux P, Suter P. Solar Energy, 1979, 22(1), 45. 17 Chen M J, Tang T Q, Liu Z Y, et al. Journal of University of Chinese Academy of Sciences, 2018, 35(2), 222 (in Chinese). 陈梅洁, 唐天琪, 刘子玉, 等. 中国科学院大学学报, 2018, 35(2), 222. 18 Chen M J, He Y R, Huang J, et al. International Journal of Heat and Mass Transfer, 2017, 108, 1894. 19 Chen M J, He Y R, Zhu J Q, et al. Energy Conversion and Management, 2016, 112, 21. 20 Yang Q R, Shen C, Zhang C X, et al. Journal of Xi'an University of Architecture & Technology(Natural Science Edition), 2021, 53(6), 791 (in Chinese). 杨茜茹, 沈朝, 张春晓, 等. 西安建筑科技大学学报(自然科学版), 2021, 53(6), 791. 21 Zhu G H. Recycle of gold from waste gold plating solution and photothermal conversion performance of gold nanoparticles. Master's Thesis, Shanghai Polytechnic University, China, 2019 (in Chinese). 朱桂华. 废镀金液中金的回收及纳米金的光热转换应用. 硕士学位论文, 上海第二工业大学, 2019. 22 Karami M, Bozorgi M, Delfani S, et al. Sustainable Energy Technologies and Assessments, 2018, 28, 14. 23 Duan H L. Physica E-Low-Dimensional Systems & Nanostructures, 2020, 120, 114046. 24 Wang T M, Tang G H. Journal of Engineering Thermophysics, 2019, 40(3), 639(in Chinese). 王甜蜜, 唐桂华. 工程热物理学报, 2019, 40(3), 639. 25 Zhang H Y, Wang K X, Wang L L, et al. Solar Energy, 2020, 201, 628. 26 Karami M, Akhavan-Behabadi M A, Dehkordi M R, et al. Solar Energy Materials and Solar Cells, 2016, 144, 136. 27 Chen Y Y. Stably dispered Fe3O4/silicone oil nanofluids for direct solar thermal energy harcest. Master's Thesis, Shanghai Jiaotong University, China, 2017 (in Chinese). 陈颖颖. 应用于太阳光热储存的硅油基Fe3O4纳米流体稳定性研究. 硕士学位论文, 上海交通大学, 2017. 28 Lei H, Wang K X, Ma W G, et al. Journal of Central South University(Science and Technology), 2021, 52(1), 153 (in Chinese). 雷晖, 汪孔祥, 马维刚, 等. 中南大学学报(自然科学版), 2021, 52(1), 153. 29 Li F H. CIESC Journal, 2020, 71(S1), 479 (in Chinese). 李富恒. 化工学报, 2020, 71(S1), 479. 30 Wang F X. Thermophysical property and solar-thermal convertion efficiency of graphene/ionic liquid nanofluids for solar collectors. Master's Thesis, South China University of Technology, China, 2013 (in Chinese). 汪福宪. 石墨烯/离子液体集热纳米流体的热物性及光热转换性能. 硕士学位论文, 华南理工大学, 2013. 31 Wang N, Xu G Y, Li S H, et al. In:8th International Conference on Applied Energy (ICAE 2016). Beijing, China, 2016. 32 Li Z, Kan A, Wang K, et al. Applied Thermal Engineering, 2022, 203, 203. 33 Chen L L, Xu C, Liu J, et al. Solar Energy, 2017, 148, 17. 34 Shi J Y, Liu Z M, Li J K, et al. Journal of University of Jinan(Science and Technology), 2017, 31(3), 239 (in Chinese). 史继媛, 刘宗明, 李金凯, 等. 济南大学学报(自然科学版), 2017, 31(3), 239 (in Chinese). 35 Zhang F L, Wang L, Yu S R, et al. Journal of Functional Materials, 2015, 46(16), 16138 (in Chinese). 张飞龙, 王莉, 俞树荣, 等. 功能材料, 2015, 46(16), 16138. 36 Luo Y P, Qiu Z W. Journal of Zhengzhou University(Engineering Science), 2018, 39(4), 25 (in Chinese). 罗亚萍, 邱兆文. 郑州大学学报(工学版), 2018, 39(4), 25. 37 Khosrojerdi S, Lavasani A M, Vakili M. Solar Energy Materials and Solar Cells, 2017, 164, 32. 38 Xu X, Xu C, Liu J, et al. Renewable Energy, 2019, 133, 760. 39 Chen L L, Liu J, Fang X M, et al. Solar Energy Materials and Solar Cells, 2017, 163, 125. 40 Qu J, Tian M, Wang Q, et al. CIESC Journal, 2016, 67(S2), 113 (in Chinese). 屈健, 田敏, 王谦, 等. 化工学报, 2016, 67(S2), 113. 41 Chen F, Dai Y C, Ye X J, et al. Energy Conservation, 2016, 35(6), 40 (in Chinese). 陈飞, 戴雨辰, 叶晓江, 等. 节能, 2016, 35(6), 40. 42 Said Z. International Communications In Heat And Mass Transfer, 2016, 78, 207. 43 Zong M L, Ye X J, Chang H Z, et al. Acta Energiae Solaris Sinica, 2020, 41(5), 48(in Chinese). 宗美林, 叶晓江, 常怀钟, 等. 太阳能学报, 2020, 41(5), 48. 44 Hazra S K, Ghosh S, Nandi T K. Applied Thermal Engineering, 2019, 163(2019), 114402. 45 Gimeno-Furio A, Hernandez L, Navarrete N, et al. Renewable Energy, 2019, 140, 493. 46 Wang H, An Y, Cheng L S, et al. Solar Energy Materials and Solar Cells, 2018, 183, 151. 47 Wang H, Yang W M, Cheng L S, et al. Solar Energy Materials and Solar Cells, 2018, 176, 374. 48 Zuo X H, Yang W M, Shi M N, et al. Solar Energy, 2021, 218, 1. 49 Ding Q. Research on preparation of Chinese ink nanofluid and solar thermal desalination application. Master's Thesis, Beijing University of Chemical and Technology, China, 2020 (in Chinese). 丁秦. 中华墨纳米流体的制备及其太阳能海水淡化的应用研究. 硕士学位论文, 北京化工大学, 2020. 50 Guo J X, Wang F X, Li S A, et al. Solar Energy Materials and Solar Cells, 2022, 237, 111558. 51 Wang D B, Fang Y X, Yu W, et al. Solar Energy Materials and Solar Cells, 2021, 220, 110850. 52 Wang H, Li X K, Luo B Q, et al. Energy, 2021, 227, 111558. 53 Li X L, Chang H W, Zeng L J, et al. Energy Conversion and Management, 2020, 226, 113515. 54 Hauser D, Steinmetz L, Balog S, et al. Advanced Sustainable Systems, 2020, 4(1), 1900101. 55 Mehrali M, Ghatkesar M K, Pecnik R. Applied Energy, 2018, 224, 103. 56 Zhou G, Fang J F, Feng R, et al. Journal of Materials Science and Engineering, 2019, 37(5), 790 (in Chinese). 周刚, 方俊飞, 冯荣. 材料科学与工程学报, 2019, 37(5), 790. 57 Qu J, Zhang R M, Tian M. Chemical Industry and Engineering Progress, 2018, 37(6), 2125 (in Chinese). 屈健, 张若梅, 田敏. 化工进展, 2018, 37(6), 2125.