Please wait a minute...
材料导报  2023, Vol. 37 Issue (21): 22050317-9    https://doi.org/10.11896/cldb.22050317
  无机非金属及其复合材料 |
用于直接吸收式太阳能集热器的纳米流体研究进展
左夏华1, 宋立健1, 关昌峰1, 阎华1, 杨卫民1,2,*, 安瑛1,*
1 北京化工大学机电工程学院,北京 100029
2 北京化工大学有机无机复合材料国家重点实验室,北京 100029
Review of Application on Nanofluids for Direct Absorption Solar Collectors
ZUO Xiahua1, SONG Lijian1, GUAN Changfeng1, YAN Hua1, YANG Weimin1,2,*, AN Ying1,*
1 College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
2 State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
下载:  全 文 ( PDF ) ( 28720KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 不同于传统的平板集热器和真空管集热器,直接吸收式太阳能集热器是一种集热工质直接吸收太阳辐射能量并转化为集热介质内能的新型集热器。从传热学角度,直接吸收式太阳能集热器因为减少了吸热表面到集热工质之间的传热损失而具有更高的集热性能。然而,传统的集热工质(如水、导热油、乙二醇等液体)对太阳光的吸收能力以及光热转换效率极其有限。近年来,纳米流体因其优异的传热性能和光学性能而被视为应用于直接吸收式太阳能集热器集热工质的最佳选择。本文介绍了直接吸收式太阳能集热器的传热模型,列举了用于直接吸收式太阳能集热器的纳米流体的研究进展,归纳总结了各类具有代表性的纳米流体及其光热转换性能的相关研究,最后对纳米流体在直接吸收式太阳能集热器中的应用进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
左夏华
宋立健
关昌峰
阎华
杨卫民
安瑛
关键词:  太阳能  纳米流体  直接吸收式太阳能集热器  光热转换  纳米颗粒    
Abstract: Different from the traditional flat plate collector and vacuum tube collector, the direct absorption solar collector (DASC) is a new type of collector that directly absorbs solar radiation energy and converts it into heat. From the perspective of heat transfer, direct absorption solar collectors have excellent heat collection performance due to reducing the heat transfer loss between the absorbing surface and the collecting medium. However, traditional thermal fluids such as water, conduction oil, ethylene glycol and other organic solvent have limited ability to absorb solar energy. In recent years, nanofluids have been regarded as the best choice for direct absorption solar collectors due to their excellent heat transfer and optical properties. This paper introduces the heat transfer model of DASC, summarizes the research progress of nanofluids for DASC, and lists various representative nanofluids and related research on their photothermal conversion performance. Finally, the application of nanofluids in DASC is prospected.
Key words:  solar energy    nanofluid    direct absorption solar collector    photothermal conversion    nanoparticle
出版日期:  2023-11-10      发布日期:  2023-11-10
ZTFLH:  TK512  
基金资助: 国家自然科学基金面上项目(52176175)
通讯作者:  *杨卫民,北京化工大学机电工程学院教授、博士研究生导师,教育部长江学者特聘教授。1987年北京化工大学机械系本科毕业,1990年北京化工大学机械系硕士毕业,后到北京化工大学工作至今,1998年北京化工大学机电工程学院化工过程机械专业博士毕业。目前主要针对高分子材料先进制造装备及新材料、工业节能与新能源等方面开展研究工作。发表论文600余篇,包括Applied Surface Science、International Journal of Heat and Mass Transfer、Solar Energy、Solar Energy Materials & Solar Cells等。yangwm@mail.buct.edu.cn 安瑛,北京化工大学机电工程学院副教授、硕士研究生导师。1989年北京化工大学机械系本科毕业,1995年北京化工大学机械系硕士毕业,后到北京化工大学工作至今,2011年北京化工大学机电工程学院化工过程机械设计及理论博士毕业。目前主要针对高分子材料先进制造装备及新材料、工业节能与新能源等方面开展研究工作。发表论文100余篇,包括Solar Energy、Solar Energy Materials & Solar Cells等。anying@mail.buct.edu.cn   
作者简介:  左夏华,2016年7月于郑州大学获得工学学士学位。现为北京化工大学机电工程学院博士研究生(硕博连读),在杨卫民教授的指导下进行研究。目前主要研究领域为太阳能光热转换及其应用。
引用本文:    
左夏华, 宋立健, 关昌峰, 阎华, 杨卫民, 安瑛. 用于直接吸收式太阳能集热器的纳米流体研究进展[J]. 材料导报, 2023, 37(21): 22050317-9.
ZUO Xiahua, SONG Lijian, GUAN Changfeng, YAN Hua, YANG Weimin, AN Ying. Review of Application on Nanofluids for Direct Absorption Solar Collectors. Materials Reports, 2023, 37(21): 22050317-9.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22050317  或          http://www.mater-rep.com/CN/Y2023/V37/I21/22050317
1 Choi S U S, Eastman J A. In:1995 International mechanical engineering congress and exhibition. San Francisco, CA (United States), 1995.
2 Xu G Y, Chen W, Zhang X S, et al. Journal of Engineering Thermophysics, 2015, 36(5), 960(in Chinese).
徐国英, 陈伟, 张小松, 等. 工程热物理学报, 2015, 36(5), 960.
3 Gorji T B, Ranjbar A A. Renewable & Sustainable Energy Reviews, 2017, 72, 10.
4 Han X X. Effects of the suiface properties of nano-TiO2and suefactants on the physical properties of nanofluids. Ph. D. Thesis, North China Electric Power University(Beijing), China, 2019 (in Chinese).
韩晓雪. 纳米TiO2表面性质和表面活性剂对纳米流体物性的影响. 博士学位论文, 华北电力大学(北京), 2019.
5 Yu X, Hou Z J, Ye X J, et al. Journal of Wuhan University of Technology, 2019, 41(10), 7 (in Chinese).
余霞, 侯志坚, 叶晓江, 等. 武汉理工大学学报, 2019, 41(10), 7.
6 Li Z L. Solar water evaporation perperties of carbon-based nanofluids and interface matericals. Master's Thesis, Qingdao University of Science & Technology, China, 2020(in Chinese).
李振林. 碳基纳米流体及界面材料的太阳能水蒸发性能研究. 硕士学位论文, 青岛科技大学, 2020.
7 Zhang Z Y. Research on preparation of Silica nanofluid and relationship between stability and temperature. Master's Thesis, North China Electric Power University(Beijing), China, 2020 (in Chinese).
张哲旸. 二氧化硅纳米流体的制备及其稳定性与温度的关系研究. 硕士学位论文, 华北电力大学(北京), 2020.
8 Chen Z Z, Chen H Q, Huang L, et al. Chinese Journal of Engineering, 2022, 44(4), 812(in Chinese).
陈真真, 陈洪强 , 黄磊, 等. 工程科学学报, 2022, 44(4), 812.
9 Hong H X, Wu W D, Sheng W, et al. Chemical Industry and Enginee-ring Progress, 2008(12), 1923 (in Chinese).
洪欢喜, 武卫东, 盛伟, 等. 化工进展, 2008(12), 1923.
10 Hong H X, Wu W D, Sheng W, et al. In:The 5th National Seminar on new Technology of refrigeration and air Conditioning. Xiamen, China, 2008, pp. 382 (in Chinese).
洪欢喜, 武卫东, 盛伟, 等. 第五届全国制冷空调新技术研讨会. 厦门, 2008, pp. 382.
11 Yao Y, Lu Y, Lu Z N, et al. Fluid Machinery, 2016, 44(11), 41 (in Chinese).
姚远, 陈颖, 陆振能, 等. 流体机械, 2016, 44(11), 41.
12 Xuan Y M. Scientia Sinica(Technologica), 2014, 44(3), 269 (in Chinese).
宣益民. 中国科学:技术科学, 2014, 44(3), 269.
13 Said Z, Sundar L S, Tiwari A K, et al. Physics Reports, 2022, 946, 1.
14 Delfani S, Karami M, Akhavan-Behabadi M A. Renewable Energy, 2016, 87, 754.
15 Minardi J E, Chuang H N. Solar Energy, 1975, 17(3), 179.
16 Abdelrahman M, Fumeaux P, Suter P. Solar Energy, 1979, 22(1), 45.
17 Chen M J, Tang T Q, Liu Z Y, et al. Journal of University of Chinese Academy of Sciences, 2018, 35(2), 222 (in Chinese).
陈梅洁, 唐天琪, 刘子玉, 等. 中国科学院大学学报, 2018, 35(2), 222.
18 Chen M J, He Y R, Huang J, et al. International Journal of Heat and Mass Transfer, 2017, 108, 1894.
19 Chen M J, He Y R, Zhu J Q, et al. Energy Conversion and Management, 2016, 112, 21.
20 Yang Q R, Shen C, Zhang C X, et al. Journal of Xi'an University of Architecture & Technology(Natural Science Edition), 2021, 53(6), 791 (in Chinese).
杨茜茹, 沈朝, 张春晓, 等. 西安建筑科技大学学报(自然科学版), 2021, 53(6), 791.
21 Zhu G H. Recycle of gold from waste gold plating solution and photothermal conversion performance of gold nanoparticles. Master's Thesis, Shanghai Polytechnic University, China, 2019 (in Chinese).
朱桂华. 废镀金液中金的回收及纳米金的光热转换应用. 硕士学位论文, 上海第二工业大学, 2019.
22 Karami M, Bozorgi M, Delfani S, et al. Sustainable Energy Technologies and Assessments, 2018, 28, 14.
23 Duan H L. Physica E-Low-Dimensional Systems & Nanostructures, 2020, 120, 114046.
24 Wang T M, Tang G H. Journal of Engineering Thermophysics, 2019, 40(3), 639(in Chinese).
王甜蜜, 唐桂华. 工程热物理学报, 2019, 40(3), 639.
25 Zhang H Y, Wang K X, Wang L L, et al. Solar Energy, 2020, 201, 628.
26 Karami M, Akhavan-Behabadi M A, Dehkordi M R, et al. Solar Energy Materials and Solar Cells, 2016, 144, 136.
27 Chen Y Y. Stably dispered Fe3O4/silicone oil nanofluids for direct solar thermal energy harcest. Master's Thesis, Shanghai Jiaotong University, China, 2017 (in Chinese).
陈颖颖. 应用于太阳光热储存的硅油基Fe3O4纳米流体稳定性研究. 硕士学位论文, 上海交通大学, 2017.
28 Lei H, Wang K X, Ma W G, et al. Journal of Central South University(Science and Technology), 2021, 52(1), 153 (in Chinese).
雷晖, 汪孔祥, 马维刚, 等. 中南大学学报(自然科学版), 2021, 52(1), 153.
29 Li F H. CIESC Journal, 2020, 71(S1), 479 (in Chinese).
李富恒. 化工学报, 2020, 71(S1), 479.
30 Wang F X. Thermophysical property and solar-thermal convertion efficiency of graphene/ionic liquid nanofluids for solar collectors. Master's Thesis, South China University of Technology, China, 2013 (in Chinese).
汪福宪. 石墨烯/离子液体集热纳米流体的热物性及光热转换性能. 硕士学位论文, 华南理工大学, 2013.
31 Wang N, Xu G Y, Li S H, et al. In:8th International Conference on Applied Energy (ICAE 2016). Beijing, China, 2016.
32 Li Z, Kan A, Wang K, et al. Applied Thermal Engineering, 2022, 203, 203.
33 Chen L L, Xu C, Liu J, et al. Solar Energy, 2017, 148, 17.
34 Shi J Y, Liu Z M, Li J K, et al. Journal of University of Jinan(Science and Technology), 2017, 31(3), 239 (in Chinese).
史继媛, 刘宗明, 李金凯, 等. 济南大学学报(自然科学版), 2017, 31(3), 239 (in Chinese).
35 Zhang F L, Wang L, Yu S R, et al. Journal of Functional Materials, 2015, 46(16), 16138 (in Chinese).
张飞龙, 王莉, 俞树荣, 等. 功能材料, 2015, 46(16), 16138.
36 Luo Y P, Qiu Z W. Journal of Zhengzhou University(Engineering Science), 2018, 39(4), 25 (in Chinese).
罗亚萍, 邱兆文. 郑州大学学报(工学版), 2018, 39(4), 25.
37 Khosrojerdi S, Lavasani A M, Vakili M. Solar Energy Materials and Solar Cells, 2017, 164, 32.
38 Xu X, Xu C, Liu J, et al. Renewable Energy, 2019, 133, 760.
39 Chen L L, Liu J, Fang X M, et al. Solar Energy Materials and Solar Cells, 2017, 163, 125.
40 Qu J, Tian M, Wang Q, et al. CIESC Journal, 2016, 67(S2), 113 (in Chinese).
屈健, 田敏, 王谦, 等. 化工学报, 2016, 67(S2), 113.
41 Chen F, Dai Y C, Ye X J, et al. Energy Conservation, 2016, 35(6), 40 (in Chinese).
陈飞, 戴雨辰, 叶晓江, 等. 节能, 2016, 35(6), 40.
42 Said Z. International Communications In Heat And Mass Transfer, 2016, 78, 207.
43 Zong M L, Ye X J, Chang H Z, et al. Acta Energiae Solaris Sinica, 2020, 41(5), 48(in Chinese).
宗美林, 叶晓江, 常怀钟, 等. 太阳能学报, 2020, 41(5), 48.
44 Hazra S K, Ghosh S, Nandi T K. Applied Thermal Engineering, 2019, 163(2019), 114402.
45 Gimeno-Furio A, Hernandez L, Navarrete N, et al. Renewable Energy, 2019, 140, 493.
46 Wang H, An Y, Cheng L S, et al. Solar Energy Materials and Solar Cells, 2018, 183, 151.
47 Wang H, Yang W M, Cheng L S, et al. Solar Energy Materials and Solar Cells, 2018, 176, 374.
48 Zuo X H, Yang W M, Shi M N, et al. Solar Energy, 2021, 218, 1.
49 Ding Q. Research on preparation of Chinese ink nanofluid and solar thermal desalination application. Master's Thesis, Beijing University of Chemical and Technology, China, 2020 (in Chinese).
丁秦. 中华墨纳米流体的制备及其太阳能海水淡化的应用研究. 硕士学位论文, 北京化工大学, 2020.
50 Guo J X, Wang F X, Li S A, et al. Solar Energy Materials and Solar Cells, 2022, 237, 111558.
51 Wang D B, Fang Y X, Yu W, et al. Solar Energy Materials and Solar Cells, 2021, 220, 110850.
52 Wang H, Li X K, Luo B Q, et al. Energy, 2021, 227, 111558.
53 Li X L, Chang H W, Zeng L J, et al. Energy Conversion and Management, 2020, 226, 113515.
54 Hauser D, Steinmetz L, Balog S, et al. Advanced Sustainable Systems, 2020, 4(1), 1900101.
55 Mehrali M, Ghatkesar M K, Pecnik R. Applied Energy, 2018, 224, 103.
56 Zhou G, Fang J F, Feng R, et al. Journal of Materials Science and Engineering, 2019, 37(5), 790 (in Chinese).
周刚, 方俊飞, 冯荣. 材料科学与工程学报, 2019, 37(5), 790.
57 Qu J, Zhang R M, Tian M. Chemical Industry and Engineering Progress, 2018, 37(6), 2125 (in Chinese).
屈健, 张若梅, 田敏. 化工进展, 2018, 37(6), 2125.
[1] 许兵, 姚兴洁, 刘佳, 张旭, 杨晓彤, 郭培勋, 张新玉. 面向太阳能界面蒸发的纳米光热材料与系统设计研究[J]. 材料导报, 2023, 37(S1): 23030028-8.
[2] 姜琴, 刁珂龙, 杨谋存, 朱跃钊. 纳米流体中温热稳定性研究进展[J]. 材料导报, 2023, 37(S1): 23040330-10.
[3] 夏鹏, 傅萍, 黄金华, 李佳, 宋伟杰. 硅异质结太阳能电池用透明导电氧化物薄膜的研究现状及发展趋势[J]. 材料导报, 2023, 37(9): 22090082-9.
[4] 周文彩, 王伟, 刘晓鹏, 齐帅, 于浩, 曾红杰, 王川申, 魏晓俊. 透明太阳能电池的研究进展[J]. 材料导报, 2023, 37(8): 21060214-8.
[5] 成健, 廖建飞, 杨震, 孔维畅, 刘顿. 太阳能电池多晶硅表面激光制绒技术研究进展[J]. 材料导报, 2023, 37(6): 21050219-10.
[6] 黄雪刚, 刘洋, 李博文, 谭聪, 谭春玲, 宋兰, 仇浩. 三种热点工程颗粒材料的性质与环境行为和细胞毒性的关系[J]. 材料导报, 2023, 37(6): 21050141-8.
[7] 金胜利, 寿春晖, 黄绵吉, 贺海晏, 李聪. 钙钛矿太阳能电池稳定性研究进展及模组产业化趋势[J]. 材料导报, 2023, 37(5): 21030201-13.
[8] 黄兵, 刘萍. 金属网格柔性透明导电薄膜研究进展[J]. 材料导报, 2023, 37(5): 21030214-12.
[9] 祖丽呼玛尔·木沙江, 赵静, 肖鹏飞. 金属基纳米材料在过硫酸盐高级氧化工艺中的应用进展[J]. 材料导报, 2023, 37(4): 21040022-8.
[10] 王信刚, 雷为愉, 朱街禄, 张晨阳. 可逆热致变色相变微胶囊的热响应及光热转换性能[J]. 材料导报, 2023, 37(20): 22030234-6.
[11] 盛友杰, 彭云川, 张含灵, 阎灿彬, 李杨, 马文智. SiO2纳米颗粒对环保型泡沫灭火剂稳定性的影响[J]. 材料导报, 2023, 37(18): 22050272-6.
[12] 于洪江, 高明慧, 张美画, 常紫汐, 赵锡麟, 杜春保. 碳纳米流体提高原油采收率室内研究进展与展望[J]. 材料导报, 2023, 37(17): 21090189-9.
[13] 赵春波, 赵嵘, 戚剑飞, 庄文博, 刘婕, 陈沛, 万艳芬, 杨鹏. 面向双碳目标的水淡技术:生物质碳用于界面太阳能光蒸汽转化技术的研究进展[J]. 材料导报, 2023, 37(12): 21110158-13.
[14] 段晶, 吴佳蕾, 林涛, 邵慧萍. 磁性功能支架用于骨组织工程的研究进展[J]. 材料导报, 2023, 37(10): 21100129-9.
[15] 廖家蔚, 刘红宇, 谢凯欣, 沈慧玲, 刘佳乐, 郑兴农. 四氧化三铁磁性药物载体的研究进展[J]. 材料导报, 2022, 36(Z1): 22040052-7.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed