Please wait a minute...
材料导报  2023, Vol. 37 Issue (22): 22030266-7    https://doi.org/10.11896/cldb.22030266
  金属与金属基复合材料 |
增材制造Ti-6Al-4V合金晶粒形貌调控研究进展
王利卿1, 凌子涵1, 赵占勇1, 张震1, 白培康1,2,*
1 中北大学材料科学与工程学院,太原 030051
2 太原科技大学材料科学与工程学院,太原 030024
Research Progress on the Regulation of Grain Morphology in the Additive Manufactured Ti-6Al-4V Alloy
WANG Liqing1, LING Zihan1, ZHAO Zhanyong1, ZHANG Zhen1, BAI Peikang1,2,*
1 School of Materials Science and Engineering, North University of China, Taiyuan 030051,China
2 College of Materials Science and Engineering, Taiyuan University of Science and Technology, Taiyuan 030024, China
下载:  全 文 ( PDF ) ( 43881KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 增材制造(3D打印)为复杂零件快速制造、构件高性能修复和产品个性化定制提供了新的技术途径。针对应用较为广泛的Ti-6Al-4V(TC4)合金,3D打印技术的快速发展为TC4合金构件的设计、优化与制造提供了新的动力。然而,大部分3D打印TC4合金中初生β-Ti晶粒通过外延生长形成了贯穿多个沉积层的粗大柱状晶,导致显著的力学性能各向异性。为此,大量的研究工作致力于3D打印TC4合金微观组织与力学性能调控,以改善力学性能各向异性、优化强度与塑性匹配。本文综述了近几年3D打印TC4合金初生β-Ti晶粒形貌调控及其对力学性能影响的研究成果,重点介绍了提高初生β-Ti晶粒形核率和再结晶机制作用下的柱状晶向等轴晶转变的方法,相应的微观组织与力学性能演变规律,以及柱状晶和等轴晶混合组织的科研价值与应用潜力。本文还指出了现有技术的优势与不足,并展望了基于调控初生β-Ti晶粒形貌优化TC4合金强度与塑性匹配的3D打印技术研究的发展方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王利卿
凌子涵
赵占勇
张震
白培康
关键词:  增材制造  Ti-6Al-4V合金  初生β-Ti晶粒形貌  凝固行为  力学性能    
Abstract: Additive manufacturing (AM) provides new technology for rapid manufacturing of complex parts, high-performance repair of components and personalized customization of products. For the most widely used Ti-6Al-4V (TC4) alloy, the rapid development of AM provides new driving force for the design, optimization and manufacturing of TC4 alloy and its components. However, most of the AMed TC4 alloys exhibit coarse columnar prior-β-Ti grains through multiple deposition layers by epitaxial growth, which results in significant anisotropy of mechanical properties. Therefore, a lot of research work focus on the regulation of the microstructure and mechanical properties of the AMed TC4 alloy, so as to weaken the anisotropy of mechanical properties and optimize the combination of strength and plasticity. This review paper summarizes the recent results of the regulation of the prior-β-Ti grains morphology and its effect on mechanical properties in the AMed TC4 alloys, mainly including the technology for the columnar to equiaxed grain transformation based on improving prior-β-Ti grain nucleation rate and recrystallization mechanism, corresponding evolution of the microstructure and mechanical properties, as well as the scientific research value and application potential of the mixed microstructure with columnar and equiaxed prior-β-Ti grains. Meanwhile, the advantages and disadvantages of the AM technologies are pointed out, and the future research directions of the AM technology based on optimizing the combination of strength and plasticity are prospected.
Key words:  additive manufacture    Ti-6Al-4V alloy    morphology of prior-β-Ti grain    solidification behavior    mechanical property
出版日期:  2023-11-25      发布日期:  2023-11-21
ZTFLH:  TG146.2+3  
基金资助: 山西省基础研究计划资助项目 (202203021212150;20210302123064);中北大学高层次人才科研启动费 (11013110)
通讯作者:  * 白培康,1999年于吉林工业大学获博士学位,中北大学材料科学与工程学院教授、博士研究生导师,太原科技大学校长、党委副书记。目前主要从事激光成型技术、材料再生与综合利用技术等方面的研究工作,承担部级以上课题30余项、发表学术论文80余篇、授权国家发明专利39项。baipeikang@nuc.edu.cn   
作者简介:  王利卿,中北大学材料科学与工程学院讲师。2018年于东北大学获得博士学位,目前主要研究领域为激光3D打印、3D打印金属材料微观组织与力学性能。
引用本文:    
王利卿, 凌子涵, 赵占勇, 张震, 白培康. 增材制造Ti-6Al-4V合金晶粒形貌调控研究进展[J]. 材料导报, 2023, 37(22): 22030266-7.
WANG Liqing, LING Zihan, ZHAO Zhanyong, ZHANG Zhen, BAI Peikang. Research Progress on the Regulation of Grain Morphology in the Additive Manufactured Ti-6Al-4V Alloy. Materials Reports, 2023, 37(22): 22030266-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22030266  或          http://www.mater-rep.com/CN/Y2023/V37/I22/22030266
1 Zhang X Y, Zhao Y Q, Bai C G. Titanium alloy and its application, Chemical Industry Press, China, 2005, pp. 287 (in Chinese).
张喜燕, 赵永庆, 白晨光. 钛合金及应用, 化学工业出版社, 2005, pp. 287.
2 Kobryn P A, Semiatin S L. Journal of Materials Processing Technology, 2003, 135, 330.
3 Ren Y M, Lin X, Fu X, et al. Acta Materialia, 2017, 132, 82.
4 Bermingham M J, McDonald S D, Dargusch M S, et al. Journal of Materials Research, 2008, 23(1), 97.
5 Li J H, Zhou X L, Brochu M, et al. Additive Manufacturing, 2020, 31, 100989.
6 Basak A, Das S. Annual Review of Materials Research, 2016, 46(1), 125.
7 Fan Z C, Feng H W. Results in Physics, 2018, 10, 660.
8 Ahsan M N, Pinkerton A J, Moat R J, et al. Materials Science and Engineering A, 2011, 528, 7648.
9 Lunt D, Ho A, Davis A, et al. Materials Science and Engineering A, 2020, 788, 139608.
10 Carroll B E, Palmer T A, Beese A M. Acta Materialia, 2015, 87, 309.
11 Somlo K, Poulios K, Funch C V, et al. Mechanics of Materials, 2021, 162, 104034.
12 Brandl E, Michailov V, Viehweger B, et al. Surface and Coatings Technology, 2011, 206, 1120.
13 Herzog D, Seyda V, Wycisk E, et sl. Acta Materialia, 2016, 117, 371.
14 Wang X, Zhang L J, Ning J, et al. Additive Manufacturing, 2021, 48, 102442.
15 Easton M A, StJohn D H. Acta Materialia, 2001, 49, 1867.
16 Bermingham M J, StJohn D H, Krynen J, et al. Acta Materialia, 2019, 168, 261.
17 Tao X W, Yao Z J, Zhang S S, et al. Vacuum, 2020, 172, 109070.
18 Zhang K, Tian X, Bermingham M, et al. Materials and Design, 2019, 184, 10919.
19 Liu M, Liu S C, Chen W, et al. Additive Manufacturing, 2019, 30, 100873.
20 Huo P C, Zhao Z Y, Du W B, et al. Ceramic Internaltional, 2021, 47, 19546.
21 Huo P C, Zhao Z Y, Du W B, et al. Composites Part B-Engineering, 2021, 225, 109305.
22 Fereiduni E, Ghasemi A, Elbestawi M. Additive Manufacturing, 2022, 50, 102557.
23 Li H L, Yang Z H, Cai D L, et al. Materials and Design, 2020, 185, 108245.
24 Wang X, Zhang L J, Ning J, et al. Additive Manufacturing, 2021, 45, 102045.
25 Kennedy J R, Davis A E, Caballero A E, et al. Journal of Alloys and Compounds, 2022, 895, 162735.
26 Gou J, Wang Z J, Hu S S, et al. Materials Science and Engineering A, 2020, 798, 140160.
27 Meng X, Min J, Sun Z G, et al. Composites Part B-Engineering, 2021, 212, 108667.
28 Pouzet S, Peyre P, Gorny C, et al. Materials Science and Engineering A, 2016, 677, 171
29 Chao Q, Mateti S, Annasamy M, et al. Additive Manufacturing, 2021, 46, 102173.
30 Todaro C J, Easton M A, Qiu D, et al. Nature Communications, 2020, 11, 142.
31 McAndrew A R, Rosales M A, Colegrove P A, et al. Additive Manufacturing, 2018, 21, 340.
32 Donoghue J, Antonysamy A A, Martina F, et al. Materials Characterization, 2016, 114, 103.
33 Volegrove P A, Donoghue J, Martina F, et al. Scripta Materialia, 2017, 135, 111.
34 Wang J, Lin X, Wang J T, et al. Journal of Alloys and Compounds, 2018, 768, 97.
35 Wang J, Lin X, Li J Q, et al. Materials Science and Engineering A, 2020, 772, 138703.
36 Davis A E, Kennedy J R, Strong D, et al. Materialia, 2021, 20, 101202.
37 Qi M, Huang S S, Ma Y J, et al. Journal of Materials Research and Technology, 2021, 13, 1159.
38 Liu C M, Tian X J, Tang H B, et al. Journal of Alloys and Compounds, 2013, 572, 17.
39 Wang T, Zhu Y Y, Zhang S Q, et al. Journal of Alloys and Compounds, 2015, 623, 505.
40 Wu X L, Yang M X, Yuan F P, et al. Proceedings of the National Aca-demy of Sciences of the United States of America, 2015, 112(47), 14501.
41 Wu X L, Zhu Y T. Materials Research Letters, 2017, 5(8), 527.
42 Zhu Y T, Wu X L. Materials Research Letters, 2019, 7(10), 393.
43 Zhu Y T, Ameyama K, Anderson P M, et al. Materials Research Letters, 2021, 9(1), 1.
[1] 李欢, 刘千喜, 曹彪, 张长鑫, 钱利勤, 周亢. 铝/铜超声波焊接与连接的研究进展[J]. 材料导报, 2023, 37(S1): 23040197-11.
[2] 吴伟喆, 刘阳, 张艺欣, 黄建山, 闫国威. 冻融环境下FRCC孔隙结构与力学性能研究综述[J]. 材料导报, 2023, 37(S1): 23010108-12.
[3] 刘海韬, 姜如, 孙逊, 陈晓菲, 马昕, 杨方. 多孔Al2O3f/Al2O3复合材料研究进展[J]. 材料导报, 2023, 37(9): 22070158-10.
[4] 孙睿, 邬兆杰, 王栋民, 丁源, 房奎圳. 超细镁渣微粉-水泥复合胶凝材料的性能及水化机理[J]. 材料导报, 2023, 37(9): 22060197-11.
[5] 胡海波, 朱丽慧, 涂有旺, 段元满, 吴晓春, 顾炳福. 深冷处理工艺对M2高速钢显微组织与性能的影响[J]. 材料导报, 2023, 37(9): 21110028-6.
[6] 范雨生, 王茹. 纳米二氧化硅对丁苯共聚物/硫铝酸盐水泥复合砂浆物理力学性能的影响[J]. 材料导报, 2023, 37(9): 21080193-7.
[7] 陈磊, 徐荣正, 张利, 刘亚光, 李正坤, 张海峰, 张波. Zr基非晶夹层对Al/TA1异种金属电子束焊接头组织和性能的影响[J]. 材料导报, 2023, 37(8): 21100079-4.
[8] 彭乐, 郑志军. 激光选区熔化成形金属件的缺陷类型及表征方法概述[J]. 材料导报, 2023, 37(8): 21050053-7.
[9] 刘勇, 刘哲, 高广志, 李志勇, 马凤森. 基于纳米材料的微针阵列技术及其应用[J]. 材料导报, 2023, 37(8): 21110160-10.
[10] 王梦浩, 王朝辉, 高璇, 高峰, 肖绪荡. 公路路面乳化沥青冷再生技术综述[J]. 材料导报, 2023, 37(7): 21080241-11.
[11] 程瑄, 桂晓露, 高古辉. 先进高强钢中的残余奥氏体:综述[J]. 材料导报, 2023, 37(7): 21070186-12.
[12] 乔丽学, 曹睿, 车洪艳, 李晌, 王铁军, 董浩, 王彩芹, 闫英杰. M390高碳马氏体不锈钢与304奥氏体不锈钢CMT对接焊连接机理[J]. 材料导报, 2023, 37(7): 21090294-6.
[13] 赵宇, 武喜凯, 朱伶俐, 杨章, 杨若凡, 管学茂. 碳纳米管对3D打印混凝土流变性能及力学性能的影响[J]. 材料导报, 2023, 37(6): 21080137-6.
[14] 刘文憬, 李元东, 宋赵熙, 毕广利, 杨昊坤, 曹杨婧. Sr+Er复合变质对AlSi10MnMg合金微观组织、导热及力学性能的影响[J]. 材料导报, 2023, 37(6): 21090239-7.
[15] 高志玉, 樊献金, 高思达, 薛维华. 基于多模型机器学习的合金结构钢回火力学性能研究[J]. 材料导报, 2023, 37(6): 21090025-7.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed