Please wait a minute...
材料导报  2021, Vol. 35 Issue (19): 19223-19229    https://doi.org/10.11896/cldb.20080081
  高分子与聚合物基复合材料 |
玄武岩纤维增强聚合物锚杆用于地下结构抗浮的可行性研究
井德胜1, 白晓宇1, 冯志威2, 张明义1, 李翠翠3
1 青岛理工大学土木工程学院,青岛 266033
2 青岛市地铁四号线有限公司,青岛 266000
3 青建集团股份公司,青岛 266071
Feasibility Study of BFRP Anchor Used in Anti-floating of Underground Structure
JING Desheng1, BAI Xiaoyu1, FENG Zhiwei2, ZHANG Mingyi1, LI Cuicui3
1 College of Civil Engineering, Qingdao University of Technology, Qingdao 266033, China
2 Qingdao Metro Line 4 Co., Ltd., Qingdao 266000, China
3 Qingdao Construction Group, Qingdao 266071, China
下载:  全 文 ( PDF ) ( 5135KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 随着城市地下空间开发的大规模展开,基础埋深不断增大,地下抗浮问题日益突出。抗浮锚杆因具有布置灵活、单锚受力小、工艺简单、成本较低等优势而被广泛推广。而传统的金属抗浮锚杆耐腐蚀性差,即使采用套管、涂抹防腐剂等措施,还是无法避免地铁等直流供电系统产生的杂散电流对钢筋锚杆腐蚀的影响,因此将其作为地下永久结构,显然难以保证耐久性,遂有锚杆“定时炸弹”之名。
近年来,纤维增强聚合物(Fiber reinforced polymer,FRP)越来越受关注,由于其具有抗拉强度高、绝缘性好、耐腐蚀性强等优点,被认为是钢筋的最佳替代品。目前,玻璃纤维增强聚合物(Glass fiber reinforced polymer,GFRP)已经应用到许多锚固工程中,而碳纤维增强聚合物(Carbon fiber reinforced polymer,CFRP)由于造价昂贵,在岩土工程中的应用受到制约。玄武岩纤维增强聚合物(Basalt fiber reinforced polymer,BFRP)材料的出现为地下结构抗浮提供了新思路。BFRP锚杆凭借其抗拉强度高、耐腐蚀性强、介电性能好等优点,被看作是钢筋锚杆的良好替代品。
本文首先从BFRP锚杆的基本属性、作用机理及耐腐蚀性能等方面进行论述,然后分别通过室内静力锚固、动力锚固以及现场锚固试验对BFRP锚杆应用于地下结构抗浮工程中的可靠性进行分析论证,最后从经济效益出发,根据等强度原则,对BFRP锚杆性价比进行对比分析,并为BFRP锚杆在抗浮工程领域的未来发展提供了新思路。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
井德胜
白晓宇
冯志威
张明义
李翠翠
关键词:  BFRP锚杆  抗浮  耐腐蚀  黏结性能  经济效益    
Abstract: With the massive expansion of urban underground space development, foundation depth is increasing, underground anti-floating increasingly prominent.Anti-floating anchor rods are widely promoted because of their flexible layout, small stress on a single anchor, simple process and low cost. However, the traditional metal anti-floating anchors have poor corrosion resistance. Even with the use of casing pipes and anticorrosive measures, it is still impossible to avoid the influence of the stray current generated by the subway and other DC power supply systems on the corrosion of the steel anchors. Therefore, it is obviously difficult to guarantee the durability of using it as an underground permanent structure, so the anchor “time bomb” is said.
In recent years, fiber reinforced polymer (FRP) has attracted more and more attention. Due to its high tensile strength, good insulation, and strong corrosion resistance, it is considered the best substitute for steel. At present, glass fiber reinforced polymer (GFRP) has been applied to many anchoring projects, while carbon fiber reinforced polymer (CFRP) is limited in its application in geotechnical engineering due to its high cost. The emergence of basalt fiber reinforced polymer (BFRP) materials provides new ideas for anti-floating underground structures. BFRP anchors are regarded as a good substitute for steel anchors due to their high tensile strength, strong corrosion resistance, and good dielectric pro-perties.
This article first discusses the basic properties, mechanism and corrosion resistance of BFRP anchors, and then analyzes the reliability of BFRP anchors used in underground structure anti-floating engineering from indoor static anchoring, dynamic anchoring and field anchoring tests. Analyzing and demonstrating, and finally starting from economic benefits, according to the principle of equal strength, a comparative analysis of the cost performance of BFRP anchors is carried out, and new ideas are provided for the future development of BFRP anchors in the field of anti-floating engineering.
Key words:  BFRP anchor    anti-floating    corrosion resistance    bonding performance    economic benefit
               出版日期:  2021-10-10      发布日期:  2021-11-03
ZTFLH:  TU473  
基金资助: 山东省自然科学基金重点项目(ZR2020KE009);中国博士后科学基金面上项目(2018M632641);山东省博士后创新项目(201903043);山东省高等学校科技计划项目(J16LG02);青岛市博士后应用研究资助项目(2018101)
通讯作者:  baixiaoyu538@163.com   
作者简介:  井德胜,2018年毕业于宿州学院,获得工学学士学位。现为青岛理工大学硕士研究生,在张明义教授、白晓宇副教授的指导下进行研究。目前主要研究领域为FRP材料在岩土工程中的应用。
白晓宇,男,1984年生于内蒙古呼和浩特,博士(后),副教授,硕士研究生导师。2015年6月,在青岛理工大学获土木工程专业博士学位,博士毕业后留校任教。担任国家自然科学基金项目评议人、《工程勘察》编委、《岩土工程学报》《岩土力学》等多个期刊审稿人。近五年,主持国家自然科学基金、山东省重点研发计划、中国博士后科学基金等纵向科研课题10项。目前主要研究方向有FRP材料在岩土工程中的应用、地基基础工程和岩土锚固。
引用本文:    
井德胜, 白晓宇, 冯志威, 张明义, 李翠翠. 玄武岩纤维增强聚合物锚杆用于地下结构抗浮的可行性研究[J]. 材料导报, 2021, 35(19): 19223-19229.
JING Desheng, BAI Xiaoyu, FENG Zhiwei, ZHANG Mingyi, LI Cuicui. Feasibility Study of BFRP Anchor Used in Anti-floating of Underground Structure. Materials Reports, 2021, 35(19): 19223-19229.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20080081  或          http://www.mater-rep.com/CN/Y2021/V35/I19/19223
1 Yu J. China Economic & Trade Herald, 2019(8), 33(in Chinese).
于娟. 中国经贸导刊, 2019(8), 33.
2 Bai X Y, Liu X Y, Zhang M Y, et al. Advances in Civil Engineering, DOI:10.1155/2020/8894720.
3 Kuang Z, Zhang M Y, Bai X Y. Proceedings of the Institution of Civil Engineers-Geotechnical Engineering, 2020, 173(1), 49.
4 Bai X Y, Zheng C, Zhang M Y, et al. Chinese Journal of Geotechnical Engineering, 2020, 42(7), 1304(in Chinese).
白晓宇, 郑晨, 张明义, 等. 岩土工程学报, 2020, 42(7), 1304.
5 Huang J G, Li J B, Qin Y S. Building Structure, 2020, 50(10), 129(in Chinese).
黄俊光, 李健斌, 秦泳生. 建筑结构, 2020, 50(10), 129.
6 Bai X Y, Zhang M Y, Liu H. Industrial Construction, 2014, 44(2), 94(in Chinese).
白晓宇, 张明义, 刘鹤. 工业建筑, 2014, 44(2), 94.
7 Kuang Z, Bai X Y, Zhang M Y. Science Technology and Engineering, 2019, 19(8), 244(in Chinese).
匡政, 白晓宇, 张明义. 科学技术与工程, 2019, 19(8), 244.
8 Ashrafi H, Bazli M, Oskouei A V, et al. Journal of Composites for Construction, 2017, 22(1), 1.
9 Bai X Y, Zhang M Y,Wang Y H, et al. Journal of China University of Mining & Technology, 2020, 49(1), 93(in Chinese).
白晓宇, 张明义, 王永洪, 等. 中国矿业大学学报,2020,49(1),93.
10 Fang Z, Yang J. Journal of Railway Science and Engineering, 2005, 2(4), 54(in Chinese).
方志, 杨剑. 铁道科学与工程学报, 2005, 2(4), 54.
11 Zheng C, Bai X Y, Zhang M Y, et al. Materials Reports, 2020, 34(13), 13194(in Chinese).
郑晨, 白晓宇, 张明义, 等. 材料导报, 2020, 34(13), 13194.
12 Bai X Y, Zhang M Y, Kou H L. Engineering Mechanics, 2015, 32(8), 172(in Chinese).
白晓宇, 张明义, 寇海磊. 工程力学, 2015, 32(8), 172.
13 Li G W, Liu C Q, Huang Z H, et al. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(S2), 4056(in Chinese).
李国维, 刘朝权, 黄志怀, 等. 岩石力学与工程学报, 2010, 29(S2), 4056.
14 Zhang M Y, Bai X Y, Li W W. Journal of Central South University (Science and Technology), 2016, 47(1), 239(in Chinese).
张明义, 白晓宇, 李伟伟. 中南大学学报(自然科学版), 2016, 47(1), 239.
15 Bai X Y, Zhang M Y, Zhu L, et al. Journal of Central South University(Science and Technology), 2017, 48(2), 512(in Chinese).
白晓宇, 张明义, 朱磊, 等. 中南大学学报(自然科学版), 2017, 48(2), 512.
16 Bai X Y, Zhang M Y, Li W W, et al. Journal of Central South University(Science and Technology), 2015, 46(10), 3841(in Chinese).
白晓宇, 张明义, 李伟伟, 等. 中南大学学报(自然科学版), 2015, 46(10), 3841.
17 Bai X Y, Zhang M Y, Yan N. China Civil Engineering Journal, 2015, 48(8), 38(in Chinese).
白晓宇, 张明义, 闫楠. 土木工程学报, 2015, 48(8), 38.
18 Bai X Y, Zhang M Y, Zhang S Q. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(4), 804(in Chinese).
白晓宇, 张明义, 张舜泉. 岩石力学与工程学报,2015,34(4),804.
19 Bai X Y, Zhang M Y, Liu H, et al. Rock and Soil Mechanics, 2014, 35(9), 2464(in Chinese).
白晓宇, 张明义, 刘鹤, 等. 岩土力学, 2014, 35(9), 2464.
20 Bai X Y, Kuang Z, Zhang M Y, et al. Materials Reports B:Research Papers, 2019, 33(9), 3035(in Chinese).
白晓宇, 匡政, 张明义, 等. 材料导报:研究篇, 2019, 33(9), 3035.
21 Wu Z S. Building Structure, 2007, 37(S1), 208(in Chinese).
吴智深. 建筑结构, 2007, 37(S1), 208.
22 Wu G, Wei Y, Jiang J B, et al. Industrial Construction, 2007, 37(6), 14(in Chinese).
吴刚, 魏洋, 蒋剑彪, 等. 工业建筑, 2007, 37(6), 14.
23 Yu C H. Finite element analysis of BFRP expansion bolt applied to basement anti-floating engineering. Master's Thesis, Zhejiang University of Technology, China, 2018(in Chinese).
俞晨晖. BFRP扩体锚杆应用于地下室抗浮工程的有限元分析. 硕士学位论文, 浙江工业大学, 2018.
24 Feng J, Wang Y, Zhang Y F, et al. Rock and Soil Mechanics, 2019, 40(11), 4185(in Chinese).
冯君, 王洋, 张俞峰, 等. 岩土力学, 2019, 40(11), 4185.
25 Fiore V, Scalici T, Di Bella G, et al. Composites Part B, 2015, 74, 74.
26 Lu Z, Xian G. Polymer Composites, 2018, 39(7), 2385.
27 Wang X, Zhao X, Wu Z. Materials & Design, 2019, 163, 107529.
28 Dong Z, Wu G, Zhao X, et al. Journal of Composites for Construction, 2018, 22, 04018042.
29 Guo F, Al-Saadi S, Singh R R K, et al. Corrosion Science,2018,141,1.
30 Cui Y H. Journal of Textile Research, 2005, 26(5), 120(in Chinese).
崔毅华. 纺织学报, 2005, 26(5), 120.
31 Wu X B. Bulletin of the Chinese Ceramic Society, 2020, 39(4), 1043(in Chinese).
吴晓斌. 硅酸盐通报, 2020, 39(4), 1043.
32 Qing S H, Tian C X, Huang Z M, et al. Engineering Mechanics, 2009, 26(6), 133(in Chinese).
秦士洪, 田楚兴, 黄宗明, 等. 工程力学, 2009, 26(6), 133.
33 Wu Z S, Wang X, Shi J Z. Engineering Mechanics, 2020, 37(5), 1(in Chinese).
吴智深, 汪昕, 史健喆. 工程力学, 2020, 37(5), 1.
34 Ding L N, He W D, Wu Z S, et al. Journal of Central South University(Science and Technology), 2020, 51(4), 1085(in Chinese).
丁里宁, 贺卫东, 吴智深, 等. 中南大学学报(自然科学版), 2020, 51(4), 1085.
35 Zheng Y, Zhou L Z, Taylor S E. et al. Construction and Building Mate-rials, 2019, 217, 108.
36 Kosior-Kazberuk M. MATEC Web of Conferences, 2019, 265, 05011.
37 Xie E G, Li Z Y. Fiber Composites, 2003(3), 17(in Chinese).
谢尔盖, 李中郢. 纤维复合材料, 2003(3), 17.
38 Wang L, Chen Y, Li Z W. Fiber Reinforced Plastics/Composite, 2000(6), 22(in Chinese).
王岚, 陈阳, 李振伟. 玻璃钢/复合材料, 2000(6), 22.
39 Huo W J, Zhang Z G, Wang M C, et al. Acta Materiae Compositae Sinica, 2007, 24(6), 77(in Chinese).
霍文静, 张佐光, 王明超, 等. 复合材料学报, 2007, 24(6), 77.
40 Zhang Z C, Ou J P. In: Proceedings of the Fifth National FRP Academic Exchange Conference. Beijing, 2007, pp. 90(in Chinese).
张志春, 欧进萍. 第五届全国FRP学术交流会论文集. 北京, 2007, pp. 90.
41 Wu G, Zhu Y, Dong Z Q, et al. China Civil Engineering Journal, 2014, 47(8), 32(in Chinese).
吴刚, 朱莹, 董志强, 等. 土木工程学报, 2014, 47(8), 32.
42 Tannous F E, Saadatmanesh H. Journal of Composites for Construction, 1999, 3(1), 12.
43 Altalmas A, El Refai A, Abed F. Construction and Building Materials, 2015, 81, 162.
44 Artemenko S E. Fibre Chemistry. 2003, 3, 226.
45 Friedrich M, Schulze A, Prösch G, et al. Microchimica Acta, 2000, 133(1-4), 171.
46 Yang G L. Mechanical properties test and geotechnical anchoring applications of basalt fiber reinforced plastics. Master's Thesis, Southwest Jiaotong University, China, 2016(in Chinese).
杨国梁. 玄武岩纤维复合筋材力学性能试验及岩土锚固应用. 硕士学位论文, 西南交通大学, 2016.
47 Wu G, Dong Z, Wang X, et al. Journal of Composites for Construction, 2015, 19(3), 04014058.
48 Lu Z Y, Su L Z, Xian G J, et al. Composite Structures, 2020, 234, 111650.
49 Wu G, Wang X, Wu Z, et al. Journal of Composite Materials, 2015, 49(7), 873.
50 Soong W H, Raghavan J, Rizkalla S H. Construction and Building Materials, 2011, 25(6), 2813..
51 Cosenza E, Manfredi G, Realfonzo R. Journal of composites for construction, 1997, 1(2), 40.
52 Zhang S Y. Experimental study on bond-anchorage properties between BFRP bar and concrete. Master's Thesis, Northeast Forestry University, China, 2013(in Chinese).
张绍逸. 玄武岩纤维筋与混凝土粘结锚固性能试验研究. 硕士学位论文, 东北林业大学, 2013.
53 Zhang T P. Studies on bonding behavior of BFRP-concrete interface. Master's Thesis, Jilin University of Architecture, China, 2019(in Chinese).
张天鹏. BFRP-混凝土界面粘结性能研究. 硕士学位论文, 吉林建筑大学, 2019.
54 Wu F. The experimental research on bond bahavior between BFRP rebars and the concrete. Master's Thesis, Dalian University of Technology, China, 2009(in Chinese).
吴芳. 玄武岩纤维筋与混凝土粘结性能试验研究. 硕士学位论文, 大连理工大学, 2009.
55 Liu X, Wang X, Xie K Y, et al. International Journal of Concrete Structures and Materials, 2020, 14(1), 173.
56 Zhu L, Kang J W, Zhao W, et al. Journal of Highway and Transportation Research and Development (English Edition), 2017, 11(4), 32.
57 Meng W J, Liu H X, Liu G J, et al. KSCE Journal of Civil Engineering, 2016, 20(5), 1996.
58 Huo B R, Zhang X D. Applied Mechanics and Materials,2012,1801,830.
59 Lin J F, Zhang H Z. Journal of Henan University of Urban Construction, 2012, 21(5), 5(in Chinese).
刘纪峰, 张会芝. 河南城建学院学报, 2012, 21(5), 5.
60 Li X Z, Gou C L. Low Carbon World, 2018(11), 98(in Chinese).
李秀智, 苟春林. 低碳世界, 2018(11), 98.
61 Zhao W, Wang H, Chen Y, et al. Journal of Engineering Geology, 2016, 24(5), 1008(in Chinese).
赵文, 王浩, 陈云, 等. 工程地质学报, 2016, 24(5), 1008.
62 Gao Y C, He X, Hu Y. Sichuan Architecture,2016,36(5),85(in Chinese).
高岩川, 贺雄, 胡熠. 四川建筑, 2016, 36(5), 85.
63 Wu Z X, Wu H G, Xie X L, et al. The Chinese Journal of Geological Hazard and Control, 2019, 30(6), 94(in Chinese).
武志信, 吴红刚, 谢显龙, 等. 中国地质灾害与防治学报, 2019, 30(6), 94.
64 Li C H, Wu H G, Ma N. Rock and Soil Mechanics, 2020(S2), 1(in Chinese).
李慈航, 吴红刚, 马宁. 岩土力学, 2020(S2), 1.
65 Xue W C, Kang Q L. Industrial construction,1999,29(2),19(in Chinese).
薛伟辰, 康清梁. 工业建筑, 1999, 29(2), 19.
66 Yuan Y, Jia X, Yan F Y. Journal of Highway and Transportation Research and Development, 2004, 21(9), 13(in Chinese).
袁勇, 贾新, 闫富友. 公路交通科技, 2004, 21(9), 13.
[1] 封帆, 王美玲, 李振华, 陆永浩. 超超临界机组用HR3C奥氏体耐热钢研究进展[J]. 材料导报, 2021, 35(9): 9186-9195.
[2] 李强, 赵特, 魏磊山, 陈明华, 孙旭东. Cu含量对生物可降解Zn-Cu合金组织和性能的影响[J]. 材料导报, 2021, 35(8): 8088-8092.
[3] 肖奇, 孙文磊, 刘金朵, 黄海博. Ni60A/WC激光熔覆涂层表面抗蚀行为[J]. 材料导报, 2021, 35(8): 8146-8150.
[4] 朱云娜, 高利霞, 熊彤彤, 杜婵, 张士民, 陈必清. 化学镀工艺制备高耐腐蚀性能的Ni-Co-B-Pr复合镀层[J]. 材料导报, 2021, 35(4): 4159-4164.
[5] 翟建树, 李春燕, 田霖, 卢煜, 寇生中. Fe基非晶涂层耐腐蚀性能的影响因素及提升措施综述[J]. 材料导报, 2021, 35(3): 3129-3140.
[6] 狄翀博, 王金华, 闫二虎, 王星粤, 陈运灿, 贾丽敏, 徐芬, 孙立贤. Nb-Ti-Co氢分离合金的显微组织和耐腐蚀性能[J]. 材料导报, 2021, 35(18): 18109-18115.
[7] 周建庭, 胡天祥, 杨俊, 周璐, 孙航行. 键槽构造UHPC-NC界面黏结性能试验研究[J]. 材料导报, 2021, 35(16): 16050-16057.
[8] 曹明艳, 俞爱斌, 吴玉萍, 乔磊, 程杰. 氧化石墨烯/聚酯树脂涂层的制备及耐腐蚀性能[J]. 材料导报, 2021, 35(10): 10227-10231.
[9] 梁广, 朱胜, 王文宇, 王晓明, 韩国峰, 任智强. 铝合金腐蚀防护技术研究现状及发展趋势[J]. 材料导报, 2020, 34(Z2): 429-436.
[10] 梁惠东, 郑汉杰, 杨浩, 王晨, 陈俊锋, 汪炳叔. 氮添加量对块体纳米晶NdFeB永磁材料的影响[J]. 材料导报, 2020, 34(8): 8025-8030.
[11] 马潇磊, 张成成, 张朝磊, 马晓艺, 赵海东, 方文. 基于“混杂”设计的索氏体新型不锈钢的组织和性能[J]. 材料导报, 2020, 34(4): 4103-4107.
[12] 瞿猛, 唐建国, 叶凌英, 李承波, 李建湘, 周旺, 邓运来. 过时效与添加Zr对Al-Zn-Mg合金耐腐蚀性能影响的对比[J]. 材料导报, 2020, 34(2): 2083-2087.
[13] 马旻昱, 连勇, 张津. 增材制造技术制备高熵合金的研究现状及展望[J]. 材料导报, 2020, 34(17): 17082-17088.
[14] 郑晨, 白晓宇, 张明义, 王海刚. 玻璃纤维增强聚合物锚杆在地下结构抗浮工程中的研究进展[J]. 材料导报, 2020, 34(13): 13194-13020.
[15] 李萧, 胡水平, 韩天棋. Nd、Y对AZ31镁合金热轧退火薄板耐蚀性的影响[J]. 材料导报, 2020, 34(10): 10088-10092.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[3] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[4] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[5] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[6] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[7] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[8] JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes[J]. Materials Reports, 2017, 31(22): 10 -14 .
[9] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[10] ZHOU Dianwu, HE Rong, LIU Jinshui, PENG Ping. Effects of Ge, Si Addition on Energy and Electronic Structure of ZrO2 and Zr(Fe,Cr)2[J]. Materials Reports, 2017, 31(22): 146 -152 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed