Please wait a minute...
材料导报  2021, Vol. 35 Issue (8): 8099-8102    https://doi.org/10.11896/cldb.20010015
  金属与金属基复合材料 |
时效工艺对汽车用6061铝合金型材压溃性能的影响
万里1,2, 刘荣超2, 邓运来1, 唐建国1, 张勇1
1 中南大学材料科学与工程学院,长沙 410083
2 广东凤铝铝业有限公司,佛山 528000
Effect of Process State on Crushing Properties of 6061 Aluminum Alloy Profiles for Automobile
WAN Li1,2, LIU Rongchao2, DENG Yunlai1, TANG Jianguo1, ZHANG Yong1
1 School of Materials Science and Engineering, Central South University, Changsha 410083, China
2 Guangdong Fenglu Aluminum Co., Ltd, Foshan 528000, China
下载:  全 文 ( PDF ) ( 5874KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本研究采用电子万能试验机、扫描电镜等手段研究了不同时效温度(120~220 ℃)对汽车用6061铝合金型材塑性变形行为的影响。结果表明:当时效温度为120 ℃时,材料具有约22%的综合延伸率(A50),其中均匀延伸率(Ag)为20%,表现出显著的韧性断裂特征,且断口形貌中存在小部分大而深的韧窝。而当时效温度为160~180 ℃时,材料强度升高的同时其延伸率(A50Ag)逐渐降低至9%以下,断口韧窝形貌特征小而浅。随着时效温度的进一步升高,材料的综合延伸率逐渐回升,而均匀延伸率则趋于稳定,两延伸率差值显著变大,拉伸试样逐渐出现强烈的颈缩现象,断口形貌则以大而深的韧窝为主。虽然高均匀延伸率的欠时效试样与出现强烈颈缩的过时效试样都表现出良好的压溃性能,但是强颈缩试样更优。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
万里
刘荣超
邓运来
唐建国
张勇
关键词:  时效工艺  压溃性能  均匀延伸率  颈缩    
Abstract: In this paper, the effect of aging temperature (120 — 220 ℃) on the plastic deformation behavior of 6061 aluminum alloy profile for automobile was studied by means of electronic universal testing machine and scanning electron microscope. The results show that the composite elongation (A50) is about 22% and the uniform elongation (Ag) is about 20% after low temperature aging. The samples show the characteristics of ductile fracture, and there are some large and deep dimples in the fracture morphology. However, aging at 160—180 ℃ increased the strength of the material, while its elongation (A50 and Ag) decreased to less than 9%. The dimple morphology of the fracture surface is small and shallow. With the further increase of aging temperature, the comprehensive elongation of the material gradually rises, while the uniform elongation tends to be stable. The difference between the two kinds of elongation increased significantly. The tensile specimen shows a strong necking phenomenon, and its fracture morphology is dominated by large and deep dimples. Although the high uniform elongation sample and the strong necking sample show good crushing performance, the strong necking sample is better.
Key words:  aging process    crushing property    uniform elongation    necking
               出版日期:  2021-04-25      发布日期:  2021-05-10
ZTFLH:  TG146.2  
基金资助: 佛山市核心技术攻关项目(1920001000409)
通讯作者:  wanli_csu@yeah.net;yong.zhang@csu.edu.cn   
作者简介:  万里,中南大学-广东凤铝铝业有限公司在站博士后。2005年9月至2019年4月,在中南大学获得材料科学与工程专业工学学士学位和材料加工工程专业工学博士学位。在国内外学术期刊上发表论文20余篇,申请发明专利5项。研究工作主要围绕先进有色金属材料,开展关于成分设计、加工工艺以及组织性能控制的基础理论和应用研究,目前正主持佛山市核心技术攻关项目:新能源汽车用铝合金材料研发与产业化应用。
引用本文:    
万里, 刘荣超, 邓运来, 唐建国, 张勇. 时效工艺对汽车用6061铝合金型材压溃性能的影响[J]. 材料导报, 2021, 35(8): 8099-8102.
WAN Li, LIU Rongchao, DENG Yunlai, TANG Jianguo, ZHANG Yong. Effect of Process State on Crushing Properties of 6061 Aluminum Alloy Profiles for Automobile. Materials Reports, 2021, 35(8): 8099-8102.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20010015  或          http://www.mater-rep.com/CN/Y2021/V35/I8/8099
1 Wan Y H, Wang G, Liu Z W, et al. Materials for Mechanical Enginee-ring,2012,36(7),67(in Chinese).
万银辉,王冠,刘志文,等.机械工程材料,2012,36(7),67.
2 Song B. Metallurgical Collections,2016(2),16(in Chinese).
宋冰.冶金丛刊,2016(2),16.
3 Gao G J, Li Y, Li J D, et al. Transactions of Materials and Heat Treatment,2016,37(6),76(in Chinese).
高冠军,李勇,李家栋,等.材料热处理学报,2016,37(6),76.
4 Sun B, Guan Q L. Hot Working Technology,2019,48(10),56(in Chinese).
孙斌,管庆磊.热加工工艺,2019,48(10),56.
5 Ye T, Wang G, Yao Z Q, et al. The Chinese Journal of Nonferrous Metals,2014,24(4),878(in Chinese).
叶拓,王冠,姚再起,等.中国有色金属学报,2014,24(4),878.
6 Ding X Q, He G Q, Chen C S, et al. Journal of Materials Science and Engineering,2005,23(2),302(in Chinese).
丁向群,何国求,陈成澍,等.材料科学与工程学报,2005,23(2),302.
7 Zhang W P, Li H H, Hu Z L, et al. Materials Reports A: Review Papers,2017,31(7),85(in Chinese).
张文沛,李欢欢,胡志力,等.材料导报:综述篇,2017,31(7),85.
8 Liu J A, Feng Y X. Materials Reports,2004,18(8A),203(in Chinese).
刘静安,冯云祥.材料导报,2004,18(8A),203.
9 Si Y L. Research of axial crushing of high strength aluminum alloy thin-walled structures under warm forming. Master's Thesis, Dalian University of Technology, China,2016(in Chinese).
司阳磊.高强度铝合金温成形薄壁结构件轴向压溃性能研究.硕士学位论文,大连理工大学,2016.
10 Schiffl A, Schiffl I, Hartmann M, et al. In: Aluminum Two Thousand World Congress and International Conference on Extrusion and Benchmark ICEB 2017. Verona,2017,pp.1.
11 Wan X M, Xu X F, Xu Z M, et al. Chinese Journal of Automotive Engineering,2013,3(1),19(in Chinese).
万鑫铭,徐小飞,徐中明,等.汽车工程学报,2013,3(1),19.
12 Mi L, Wei X K, Wan X M, et al. Journal of Chongqing University of Technology (Natural Science),2012,26(6),1(in Chinese).
米林,魏显坤,万鑫铭,等.重庆理工大学学报(自然科学),2012,26 (6),1.
[1] 丁凤娟, 贾向东, 洪腾蛟, 徐幼林, 胡喆. 不同热处理工艺对6061铝合金塑性和硬度的影响[J]. 材料导报, 2021, 35(8): 8108-8115.
[2] 王伟, 王萌, 蔡军, 张浩泽, 史亚鸣, 张晓锋, 黄海广, 王快社. EB炉熔炼TC4钛合金轧制过程中的组织演变与力学性能[J]. 材料导报, 2021, 35(8): 8140-8145.
[3] 刘敬福, 齐莉, 李广龙, 曲迎东. 真空搅拌TiCp/7075复合材料的组织、力学与耐磨性能[J]. 材料导报, 2021, 35(6): 6114-6119.
[4] 陈宇强, 张浩, 黄浩, 张文涛, 谢功园, 刘文辉, 潘素平, 宋宇峰, 刘阳. 基于高温扭转方法制备6061铝合金/304不锈钢层状复合材料的组织及性能[J]. 材料导报, 2021, 35(6): 6167-6173.
[5] 王颂博, 李全安, 陈晓亚, 朱利敏, 张帅, 关海昆. Zn对Mg-11Gd-3Y-0.5Zr合金热压缩行为的影响[J]. 材料导报, 2021, 35(4): 4124-4128.
[6] 刘伟, 吴远志, 邓彬, 刘安民, 刘巍, 孙乾, 叶拓. 时效工艺对6061铝合金力学性能各向异性的影响及微观组织研究[J]. 材料导报, 2021, 35(4): 4134-4138.
[7] 万杨杰, 钱晓英, 曾迎, 孙可欣, 张英波, 权高峰. Al-Zn-Mg合金的相图计算及电子结构与力学性能的第一性原理计算[J]. 材料导报, 2021, 35(2): 2139-2144.
[8] 张欣雨, 毛小南, 王可, 陈茜. 典型α+β钛合金组织对静态和动态性能的影响[J]. 材料导报, 2021, 35(1): 1162-1167.
[9] 王昕宇, 徐春, 黎雨, 庞灵欢, 王斌君, 陈建斌. 电脉冲拉伸下5052铝合金的变形行为及微观组织和织构演变[J]. 材料导报, 2020, 34(24): 24097-24103.
[10] 王兵, 乔及森, 夏宗辉. 应变速率对纯铝变形结构和取向的影响[J]. 材料导报, 2020, 34(24): 24104-24108.
[11] 罗恒, 王优强, 张平. 双液淬火下7A09铝合金的干滑动摩擦磨损性能[J]. 材料导报, 2020, 34(24): 24109-24113.
[12] 庄唯, 王耀勉, 杨换平, 剡文斌. 钛合金渗碳处理研究进展[J]. 材料导报, 2020, 34(Z2): 344-347.
[13] 刘亮, 汪志太, 杨伟, 王振军, 蔡长春, 余欢. 铜模喷铸Mg-6Al-1Y合金快冷组织形成及其固溶行为[J]. 材料导报, 2020, 34(20): 20066-20069.
[14] 张帅, 李全安, 朱宏喜, 陈晓亚, 王颂博, 关海昆. 热处理对Mg-11Gd-3Y-0.6Ca-0.5Zr合金显微组织和腐蚀行为的影响[J]. 材料导报, 2020, 34(20): 20070-20075.
[15] 王柏宁, 王峰, 王志, 周乐, 毛萍丽, 刘正. 铸态与挤压态AM50-4%(Zn,Y)合金组织及力学性能[J]. 材料导报, 2020, 34(20): 20076-20080.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed