Research Progress on Structural Modification of Novolac Resin
CHEN Shuang1, LEI Zixuan2, XU Li2, LI Jiaxuan2, CHEN Dongliang1, QIANG Junfeng1,*, LIU Yuhong2,*
1 College of Materials Science and Engineering, Xi'an University of Science and Technology, Xi'an 710054, China 2 School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China
Abstract: Phenolic resin has excellent mechanical properties and high temperature resistance, and is widely used in aerospace, architecture and other fields as the matrix resin of high-performance carbon/carbon composites or carbon/phenolic ablation resistant materials. The traditional phenolic resin releases volatiles during curing process, and its cross-linking structure after curing is deficient. For example, the tightly stacked rigid aromatic rings cause its high brittleness, the easily oxidized phenolic hydroxyl groups and methylene groups reduce its heat resistance and carbon residue rate. The multi-level structure design and modification of traditional phenolic resin is the key to satisfy its application in the field of new composite molding process and high-performance thermal protection. For example, the introduction of additive functional groups like propargyl groups and allyl groups into the novolac resin can achieve additive curing by thermal polymerization process. Through hydroxyl etherification reaction, epoxidation reaction or the introduction of molybdenum, boron, silicone and other components into the resin matrix, the molecular structure of resin can be regulated through chemical bonding and physical entanglement, then the structural design modification of phenolic resin can be achieved. This type of new phenolic resin essentially avoids the escape of small molecules during the curing process, and is easier to prepare high-quality composites. In summary, this paper focuses on several typical structural modified novolac resins and their research progress in the field of ablation protection.
1 Hirano K, Asami M. Reactive and Functional Polymers, 2013, 73(2), 256.
2 Liu J, Hou Q F, Hu R F, et al. Pioneering with Science & Technology Monthly, 2016, 29(11), 134 (in Chinese).
刘佳宁, 侯秋飞, 胡若飞, 等. 科技创业月刊, 2016, 29(11), 134.
3 Nair C P R. Progress in Polymer Science, 2004, 29(5), 401.
4 Nair C P R. Polymer Degradation and Stability,2001, 73(2), 251.
5 Lei Z X, Wang J, Zhang C, et al. Composites Science and Technology, 2021, 210, 108810.
6 Lei Z X, Wang J, Zhang C, et al. Composites Part A: Applied Science and Manufacturing, 2022, 152, 106701.
7 Ye Y H, Tian M F, Wang L, et al. China Adhesives, 2014, 23(2), 51 (in Chinese).
叶燕慧, 田谋锋, 王雷, 等.中国胶粘剂, 2014, 23(2), 51.
8 Nechausov S S, Bulgakov B A, Solopchenko A V, et al. Journal of Polymer Research, 2016, 23(6), 1.
9 Luo Z H, Yang M, Zhao T. Acta Materiae Compositae Sinica, 2009, 26(1), 13 (in Chinese).
罗振华, 杨明, 赵彤. 复合材料学报, 2009, 26(1), 13.
10 Li M L, Qi S H, Li C H, et al. Chemistry and Adhesion, 2010, 32(5), 31 (in Chinese).
李美玲, 齐暑华, 李春华,等. 化学与黏合, 2010, 32(5), 31.
11 Liu N L, Li S S, Li M L, et al. China Plastics, 2015, 29(1), 75 (in Chinese).
刘乃亮, 理莎莎, 李美玲,等. 中国塑料, 2015, 29(1), 75.
12 Li M L, Qi S H, Qi H Y, et al.China Adhesives, 2010, 29(1), 55 (in Chinese).
李美玲, 齐署华, 齐海元, 等. 中国胶粘剂, 2010, 29(1), 55.
13 Gong Y L, Deng Z H, Wu Q P, et al. Materials Reports, 2013, 27(11), 83 (in Chinese).
龚艳丽, 邓朝晖, 伍俏平,等. 材料导报, 2013, 27(11), 83.
14 Cao P, Qi S H, Li S S, et al. China Adhesives, 2011, 20(12), 16 (in Chinese).
曹鹏, 齐署华, 理莎莎, 等. 中国胶粘剂, 2011, 20(12), 16.
15 Yan Y Y. Studies on bismaleimide-allylated novolac resin systems. Ph.D.Thesis, Institute of Chemistry Chinese Academy of Sciences, China, 2002.
闫业海. 双马来酰亚胺-烯丙基线型酚醛树脂体系的研究. 博士学位论文, 中国科学院化学研究所, 2002.
16 Ye X C, Zeng L M, Liu T, et al. Journal of Wuhan University of Techno-logy, 2009, 31(20), 4 (in Chinese).
叶晓川, 曾黎明, 刘涛, 等.武汉理工大学学报,2009, 31(20), 4.
17 Zhong Z X, Geng L Y, Zhu J J, et al. Chemistry and Adhesion, 2018, 40(5), 357 (in Chinese).
钟镇祥,耿立艳, 祝晶晶, 等. 化学与粘合, 2018, 40(5), 357.
18 Bindu R L, Nair C P R, Ninan K N. Polymer International, 2001, 50(6), 651.
19 Nair C P R, Bindu R L, Krishnan K, et al.European Polymer Journal, 1999, 35(2), 235.
20 Wang M C, Zhao T.Aerospace Materials & Technology, 2005(1), 30 (in Chinese).
王明存, 赵彤.宇航材料工艺, 2005(1), 30 .
21 Tan D X, Wang Y L, et al.Journal of Functional Materials, 2015, 46(13),13111.
谭德新, 王艳丽, 等. 功能材料, 2015, 46(13), 13111.
22 Chen S F. Synthesis, characterization of propargyl resin and their compo-sites. Ph.D.Thesis, Heifei University of Technology, China, 2013(in Chinese).
陈苏锋. 含炔基树脂的合成、表征及其复合材料的研究.博士学位论文, 合肥工业大学, 2013.
23 Ye L Y, Wan L Q, Ma M M, et al. Acta Materiae Compositae Sinica, 2018, 35(7), 1762 (in Chinese).
叶绿原, 万里强, 马明明, 等.复合材料学报, 2018, 35(7), 1762.
24 Luo Z H, Zhao X Z, Zhao T, et al. Polymer Materials Science & Engineering, 2011, 27(10), 85.
罗振华, 赵绪泽, 赵彤, 等.高分子材料科学与工程, 2011, 27(10), 85 (in Chinese).
25 Li Z H, Peng Q Y, Li J J, et al.Journal of Central South University, 2018, 49(7), 1620 (in Chinese).
李芝华, 彭倩玉, 李珺杰,等. 中南大学学报,2018, 49(7), 1620.
26 Liu F S, Ling H, Zhang H, et al. Polymer Materials Science & Enginee-ring, 2009(10), 84 (in Chinese).
刘富双, 凌鸿, 张华, 等.高分子材料科学与工程, 2009(10), 84.
27 Ishida H, Low H Y. Macromolecules, 1997, 30(4), 1099.
28 Jin L, Agag T, Ishida H. European Polymer Journal, 2010, 46(2), 354.
29 Kiskan B, Yagci Y. Polymer, 2008, 49(10), 2455.
30 Wang Z, Zhao J, Ran Q, et al. Reactive and Functional Polymers, 2013, 73(4), 668.
31 Kimura H, Matsumoto A, Ohtsuka K. Journal of Applied Polymer Science, 2008, 109(2), 1248.
32 Cao G P, Chen W J, Wei J J, et al. Express Polym Letters, 2007, 1, 512.
33 Kawauchi T, Osawa T, Matsumura S, et al. Macromolecular Chemistry and Physics, 2019, 220(1), 1800317.
34 Li Dan, Zhong T J, Xu R W. In: 2016 National Symposium on Polymer Materials Science and Engineering. Guangxi, 2016.
李丹, 钟廷家, 徐日炜. 2016 年全国高分子材料科学与工程研讨会,广西, 2016.
35 Gu Y. In: 2013 National Polymer Academic Paper Conference. Shanghai, 2013.
顾宜. 2013年全国高分子学术论文报告会,上海, 2013.
36 Rimdusit S, Pirstpindvong S, Tanthapanichakoon W, et al. Polymer Engineering & Science, 2005, 45(3), 288.
37 Rao B S, Rajavardhana R K, Pathak S K, et al. Polymer International, 2005, 54(10), 1371.
38 Ishida H, Allen D J.Polymer, 1996, 37(20), 4487.
39 Wu M, Shi H S. Building Energy Efficiency, 2006, 34(2), 15 (in Chinese).
吴敏, 施惠生.房材与应用, 2006, 34(2), 15.
40 Zheng Y A, Yang Y, Li K. Materials Protection, 2005, 38(12), 51 (in Chinese).
郑易安, 杨瑛, 李柯.材料保护, 2005, 38(12), 51.
41 Ma A L, Xiao X Y, Liu B Y, et al.China Adhesives, 2020, 29(1), 37 (in Chinese).
马艾丽, 肖翔云, 刘柏言, 等.中国胶粘剂, 2020, 29(1), 37.
42 Pan G Y, Liu H P, Du Z J, et al. Polymer Materials Science & Enginee-ring, 2008 (10), 41 (in Chinese).
潘国元,刘和平,杜中杰,等.高分子材料科学与工程, 2008 (10), 41.
43 Xia T, Wang Z, Huang Y, et al. New Chemical Materials, 2020, 47(12), 66 (in Chinese).
夏涛, 汪壮, 黄莺, 等.化工新型材料, 2020, 47(12), 66.
44 Zhao Y Y, Zhou Y L, Gou H L, et al.Thermosetting Resin, 2020 (3), 28 (in Chinese).
赵影影,周洋龙,苟浩澜. 热固性树脂,2020, 35(3), 28.
45 Chalamet Y, Taha M. Journal of Polymer Science Part A: Polymer Che-mistry, 1997, 35(17), 3697.
46 Culbertson B M, Tiba O, Deviney M L, et al. Tomorrow's Materials: Today, 1989, 34, 2483.
47 Culbertson B M, Tiba O, Deviney M L. In: 20th International SAMPE Technical Conference Minneapolis. MN, USA, 1988, pp. 590.
48 Janković B. Thermochimica Acta, 2011, 519(1-2), 114.
49 Lu S H, Zhou Z W, Fang L, et al. Journal of Applied Polymer Science, 2007, 103(5), 3150.
50 Sreelal N, Sunitha K, Sreenivas N, et al. Materials Chemistry and Phy-sics, 2023,305, 128005.
51 Su J H, Liu R L. Copper Clad Laminate Information, 2019(4), 9 (in Chinese).
粟俊华, 刘人龙. 覆铜板资讯, 2019(4), 9.
52 Li H F. Study on integrated structure and function of modified cyanate ester resin with high temperature resistance and its adhesive film.Ph.D.Thesis, Northeast Forestry University, China, 2017 (in Chinese).
李洪峰. 结构-功能一体化耐高温氰酸酯树脂改性及胶膜的研究.博士学位论文, 东北林业大学, 2017.
53 Marvel C S, Rassweiler J H. Journal of the American Chemical Society, 1958, 80(5), 1197 .
54 Keller T M, Griffith J R. In: Abstracts of Papers of the American Chemical Society. Washington, 1978, pp. 105.
55 Sreelal N, Balachandran N, Vijayalekshmi K P. Journal of Polymer Research, 2022, 29(9), 1.
56 Yang Y, Zhang M, Lei Y. Aerospace Materials & Technology, 2006(2), 33 (in Chinese).
杨洋, 张敏, 雷毅.宇航材料工艺, 2006(2), 33.
57 Wang G, Ying G, Zheng L, et al. Journal of Applied Polymer Science, 2018, 135(34), 46606.
58 Zhou H, Liu F, Zhao T, et al.Aerospace Materials & Technology, 2010, 40(2), 45 (in Chinese).
周恒,刘锋,赵彤,等.宇航材料工艺, 2010, 40(2), 45.
59 周恒, 郭颖, 赵彤, 等. 中国专利, CN113637227A, 2021.
60 Luo Z H, Zhang B X, Han J W, et al. Aerospace Materials & Technology, 2011, 41(4), 20 (in Chinese).
罗振华, 张勃兴, 韩伟健, 等.宇航材料工艺, 2011, 41(4), 20.
61 Song Y Y. Research high-temperature performance of novel hybrid composites bearing phthalonitrile resins. Master's Thesis, Dalian University of Technology, China, 2018 (in Chinese).
宋媛媛. 邻苯二甲腈树脂基杂化耐高温复合材料的研究.硕士学位论文, 大连理工大学, 2018.
22050233-962 Liu X B, Wei J J, J K, et al.Journal of University of Electronic Science and Technology of China, 2009, 38(5), 603 (in Chinese).
刘孝波, 魏俊基, 贾坤, 等.电子科技大学学报, 2009, 38(5), 603.
63 罗振华, 王传开, 张勃兴, 等. 中国专利, CN106957403A, 2017.
64 赵彤, 李姗, 李昊. 中国专利, CN105968705B. 2017.
65 Liu Y H. High performance studies on hyperbranched polyborates modified phenolic resins. Ph.D.Thesis, Xi'an Jiaotong University, China, 2008 (in Chinese).
刘育红. 超支化硼酸酯改性酚醛树脂的高性能化研究.博士学位论文, 西安交通大学, 2008.
66 Bian C, Wang S, Liu Y, et al. Industrial & Engineering Chemistry Research, 2016, 55(35), 9440.
67 Bian C, Wang S, Liu Y, et al. RSC Advances, 2016, 6(60), 55007.
68 Bian C, Wang Y, Wang S, et al. Polymer Degradation and Stability, 2015, 119, 190.
69 Chen X X, He H, Jia D M, et al. Insulating Materials, 2006, 39(1), 59 (in Chinese).
陈献新, 何慧, 贾德民, 等.绝缘材料, 2006, 39(1), 59.
70 李昊, 李珊, 赵彤,等. 中国专利, CN106496473A. 2017.
71 Zhang W X. Research on preparation and high temperature interface pro-perties of silicone modified phenolic resin and composite thereof. Master's Thesis, Harbin Institute of Technology, China, 2019 (in Chinese).
张文轩. 有机硅改性酚醛树脂的制备及复合材料高温界面性能研究.硕士学位论文, 哈尔滨工业大学, 2019.
72 Yin R, Cheng H, Hong C, et al. Composites Part A: Applied Science and Manufacturing, 2017, 101, 500.
73 Li B, He C, Cao M, et al. Journal of Applied Polymer Science, 2020, 137(6), 48353.
74 Phillips S H, Haddad T S, Tomczak S J. Current Opinion in Solid State and Materials Science, 2004, 8(1), 21.
75 Gupta R, Kandasubramanian B. RSC Advances, 2015, 5(12), 8757.
76 Koo J H, Pilato L A, Wissler G E. Journal of Spacecraft and Rockets, 2007, 44(6), 1250.
77 Lei Z X, Ji J R, Wu Q Q, et al. Polymer, 2019, 178, 121587.
78 Yi T H. Chemical Industry and Engineering Progress, 2001, 20(9), 13 (in Chinese).
伊廷会.化工进展, 2001, 20(9), 13.
79 Zhang S Q, Qiang M, Lin H S, et al. Journal of Wuhan University of Science and Technology, 2003, 26(4), 370 (in Chinese).
张双庆, 强敏, 林慧珊, 等.武汉科技大学学报: 自然科学版, 2003, 26(4), 370.
80 Hua Y Q, Wu Y X, Zhang G F, et al.Polymer Materials Science & Engineering, 1990 (5), 37 (in Chinese).
华幼卿, 吴一弦, 张光复, 等.高分子材料科学与工程, 1990 (5), 37.
81 Liu X H, Gou X H. Chemical World, 1998, 39(6), 314 (in Chinese).
刘晓洪, 苟筱辉.化学世界, 1998, 39(6), 314.
82 Hua Y Q, Rao G Y. Journal of Beijing University of Chemical Technology(Natural Science Edition), 1989(2), 43 (in Chinese).
华幼卿, 饶国英.北京化工学院学报(自然科学版), 1989(2), 43.
83 Li Y L, Yin Y H, Xue Q H, et al. Bulletin of the Chinese Ceramic Society, 2016, 35(2), 665 (in Chinese).
李燕琳, 尹育航, 薛群虎, 等.硅酸盐通报, 2016, 35(2), 665.
84 Zhang M M. Research on polyphosphazene thermal-protective materials and phosphazene-modified phenolic resin. Master's Thesis, Beijing University of Chemical Technology, China, 2018 (in Chinese).
张明明. 聚磷腈热防护材料及磷腈改性酚醛探索研究.硕士学位论文, 北京化工大学, 2018.