Please wait a minute...
材料导报  2023, Vol. 37 Issue (17): 22030246-8    https://doi.org/10.11896/cldb.22030246
  金属与金属基复合材料 |
铁素体耐热钢中碳化物对NiAl析出相及力学性能的影响
杨道宽1,2, 仇念双1,2, 左小伟1,2,*
1 东北大学材料电磁过程研究教育部重点实验室,沈阳 110819
2 东北大学冶金学院,沈阳 110819
Effect of Carbides on NiAl Precipitates and Mechanical Properties in NiAl-precipitation-strengthened Ferritic Heat-resistant Steels
YANG Daokuan1,2, QIU Nianshuang1,2, ZUO Xiaowei1,2,*
1 Key Laboratory of Electromagnetic Processing of Materials (Ministry of Education), Northeastern University, Shenyang 110819, China
2 School of Metallurgy, Northeastern University, Shenyang 110819, China
下载:  全 文 ( PDF ) ( 51716KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 与传统碳化物强化的铁素体耐热钢不同,新型铁素体耐热钢以NiAl相强化为主,但存在室温脆性大的问题,限制了NiAl强化型铁素体耐热钢的应用。本工作通过增加NiAl强化型铁素体耐热钢中的碳含量,研究碳化物和NiAl析出相的晶界分布及其对钢的力学性能的影响。结果表明,随着碳含量的增加,碳化物的析出量增加,碳化物在晶界处由不连续的块状析出转变为连续均匀分布。碳化物的析出降低了α-Fe基体与NiAl相的错配度,NiAl析出相的尺寸减小约30 nm,面积分数略有降低,钢的硬度、强度和塑性得到提升,该研究将为新型NiAl强化铁素体耐热钢脆性改善提供理论指导。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨道宽
仇念双
左小伟
关键词:  铁素体耐热钢  碳化物  NiAl相  力学性能    
Abstract: Traditional ferritic heat-resistant steel is mainly strengthened by carbides, while the new ferritic heat resistant steel is mainly strengthened by NiAl precipitates. The main factor of limiting the application of NiAl strengthened ferritic heat resistant steel is poor ductility at room temperature. In this study, by adding carbon content in NiAl strengthened ferritic heat resistant steel, the interaction between carbide and NiAl precipitates and the effect on the mechanical properties were studied. The results show that with the increase of carbon content, carbides increase, and the morphology of carbides at grain boundaries is transformed from discontinuous block-like to continuously distributed strip-like. The precipitation of carbides decreases the lattice misfit between α-Fe matrix and NiAl precipitates. The mean radius of NiAl precipitates decreases by 30 nm approximately, and the volume fraction slightly decreases. The hardness, strength and ductility of the steels are improved. The results provide fundamental guidance for the ductility improvement of NiAl strengthened ferritic heat-resistant steel.
Key words:  ferritic heat-resistant steel    carbide    NiAl precipitate    mechanical property
出版日期:  2023-09-10      发布日期:  2023-09-05
ZTFLH:  TG142  
基金资助: 国家自然科学基金(U1860103);中央高校基本科研业务费(N2209003)
通讯作者:  *左小伟,博士,2009年东北大学获得博士学位,现任东北大学材料电磁过程研究教育部重点实验室副教授、博士研究生导师,主要从事高品质金属材料的冶金理论与技术研究,发表学术论文60余篇,授权中国发明专利15项。zuoxw@epm.neu.edu.cn   
作者简介:  杨道宽,2019年7月于辽宁科技学院获得工学学士学位。现为东北大学冶金学院硕士研究生,在左小伟副教授的指导下开展新型耐热钢的基础研究。
引用本文:    
杨道宽, 仇念双, 左小伟. 铁素体耐热钢中碳化物对NiAl析出相及力学性能的影响[J]. 材料导报, 2023, 37(17): 22030246-8.
YANG Daokuan, QIU Nianshuang, ZUO Xiaowei. Effect of Carbides on NiAl Precipitates and Mechanical Properties in NiAl-precipitation-strengthened Ferritic Heat-resistant Steels. Materials Reports, 2023, 37(17): 22030246-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22030246  或          http://www.mater-rep.com/CN/Y2023/V37/I17/22030246
1 Ning B Q, Yan Z S, Fu J C, et al. Materials Reports, 2009, 23 (7), 72 (in Chinese).
宁保群, 严泽生, 付继成, 等. 材料导报, 2009, 23(7), 72.
2 Paul V T, Saroja S, Vijayalakshmi M. Journal of Nuclear Materials, 2008, 378, 273.
3 Kim C S, Kwun S I, Park I K. Journal of Nuclear Materials, 2008, 377, 496.
4 Sawada K, Suzuki K, Kushima H, et al. Materials Science and Enginee-ring A, 2008, 480, 558.
5 Kim B, Jeong C, Lim B. Materials Science and Engineering A Structural Materials Properties, Microstructure and Processing, 2008, 483-484, 544.
6 Du B N, Sheng L Y, Lai C, et al. Rare Metal Materials and Enginee-ring, 2017, 46 (8), 2123(in Chinese).
都贝宁, 盛立远, 赖琛, 等. 稀有金属材料与工程, 2017, 46(8), 2123.
7 Danielsen H K, Di Nunzio P E, Hald J. Metallurgical and Materials Transactions A, 2013, 44, 2445.
8 Rashidi M, Golpayegani A, Sheikh S, et al. Materials & Design, 2018, 158, 237.
9 Teng Z K, Zhang F, Miller M K, et al. Intermetallics, 2012, 29, 110.
10 Jiang S H, Wang H, Wu Y, et al. Nature, 2017, 544, 460.
11 Huang S Y, Gao Y F, An K, et al. Acta Materialia, 2015, 83, 137.
12 Cho K, Ikeda K, Yasuda H Y. Materials Science and Engineering A, 2018, 728, 239.
13 Cho K, Kawahara N, Yasuda H Y. ISIJ International, 2020, 60, 2285.
14 Rawlings M J S, Liebscher C H, Asta M, et al. Acta Materialia, 2017, 128, 103.
15 Teng Z K, Liu C T, Miller M K, et al. Materials Science and Engineering A, 2012, 541, 22.
16 Edahiro T, Kouzai K, Yasuda H Y. Acta Materlalia, 2013, 61, 1716.
17 Gao Y H, Liu S Z, Hu X B, et al. Materials Science and Engineering A, 2019, 759, 298.
18 Ma W B, Liu G Q, Hu B F, et al. Rare Metal Materials and Engineering, 2014, 43(1), 109(in Chinese).
马文斌, 刘国权, 胡本芙, 等. 稀有金属材料与工程, 2014, 43(1), 109.
19 Kabakci F, Acarer M, Baydogan M, et al. Metallurgical and Materials Transactions A-Physical Metallurgy and Materials Science, 2021, 52, 129.
20 Wang F G, Zhu S M, Zhu S J, et al. Acta Metallurgica Sinica, 1991, 27(4), 54 (in Chinese).
王富岗, 祝苏明, 朱世杰, 等. 金属学报, 1991, 27(4), 54.
21 Teng Z K, Liu C T, Ghosh G, et al. Intermetallics, 2010, 18, 1437.
22 Zhang R H, Zhang C, Xia Z X, et al. Acta Metallurgica Sinica, 2013, 49 (9), 1075(in Chinese).
张芮辉, 张弛, 夏志新, 等. 金属学报, 2013, 49(9), 1075.
23 Wu W F, Gao N, Liu X W, et al. Materials Letters, 2021, 298, 130020.
24 Wang J Q, Jin X L, Leng Y X, et al. Hot Working Technology, 2021, 50(5), 35 (in Chinese).
王佳祺, 靳旭乐, 冷宇轩, 等. 热加工工艺, 2021, 50(5), 35.
25 Baik S I, Rawlings M J S, David D C. Materials Science and Engineering A, 2020, 776, 138987.
26 Cui Z Q, Tan Y C. Metalology and heat treatment, China Machine Press, China, 2007, pp. 199 (in Chinese).
崔忠圻, 覃耀春. 金属学与热处理, 机械工业出版社, 2007, pp. 199.
27 Zhao W X, Zhou D Q, Jiang S H, et al. Materials Science and Enginee-ring A, 2018, 738, 295.
28 Yin J W, Effect of Carbon content on high temperature properties of Cr-Mo-V hot work die steel. Master’s Thesis, Kunming University of Science and Technology, China, 2019(in Chinese).
殷军伟. 碳含量对Cr-Mo-V系热作模具钢高温性能的影响研究. 硕士学位论文, 昆明理工大学, 2019.
29 Wen P, Tao G, Ren B X, et al. Journal of Applied Mechanics, 2015(6), 8(in Chinese).
闻鹏, 陶钢, 任保祥, 等. 应用力学学报, 2015(6), 8.
30 Qi Y H, Li H, Han P, et al. Rare Metal Materials and Engineering, 2008, 37(5), 887(in Chinese).
齐义辉, 李慧, 韩萍, 等. 稀有金属材料与工程, 2008, 37(5), 887
31 Wang Z W, Baker I, Cai Z H, et al. Acta Materialia, 2016, 120, 228.
[1] 刘海韬, 姜如, 孙逊, 陈晓菲, 马昕, 杨方. 多孔Al2O3f/Al2O3复合材料研究进展[J]. 材料导报, 2023, 37(9): 22070158-10.
[2] 孙睿, 邬兆杰, 王栋民, 丁源, 房奎圳. 超细镁渣微粉-水泥复合胶凝材料的性能及水化机理[J]. 材料导报, 2023, 37(9): 22060197-11.
[3] 胡海波, 朱丽慧, 涂有旺, 段元满, 吴晓春, 顾炳福. 深冷处理工艺对M2高速钢显微组织与性能的影响[J]. 材料导报, 2023, 37(9): 21110028-6.
[4] 范雨生, 王茹. 纳米二氧化硅对丁苯共聚物/硫铝酸盐水泥复合砂浆物理力学性能的影响[J]. 材料导报, 2023, 37(9): 21080193-7.
[5] 陈磊, 徐荣正, 张利, 刘亚光, 李正坤, 张海峰, 张波. Zr基非晶夹层对Al/TA1异种金属电子束焊接头组织和性能的影响[J]. 材料导报, 2023, 37(8): 21100079-4.
[6] 杜金亮, 杨丽娜, 冯运莉, 李杰, 刘国龙, 吝冉. 温轧40CrMo中厚钢板在退火过程中铁素体与碳化物的协同演变规律[J]. 材料导报, 2023, 37(8): 21070164-3.
[7] 刘勇, 刘哲, 高广志, 李志勇, 马凤森. 基于纳米材料的微针阵列技术及其应用[J]. 材料导报, 2023, 37(8): 21110160-10.
[8] 王梦浩, 王朝辉, 高璇, 高峰, 肖绪荡. 公路路面乳化沥青冷再生技术综述[J]. 材料导报, 2023, 37(7): 21080241-11.
[9] 程瑄, 桂晓露, 高古辉. 先进高强钢中的残余奥氏体:综述[J]. 材料导报, 2023, 37(7): 21070186-12.
[10] 乔丽学, 曹睿, 车洪艳, 李晌, 王铁军, 董浩, 王彩芹, 闫英杰. M390高碳马氏体不锈钢与304奥氏体不锈钢CMT对接焊连接机理[J]. 材料导报, 2023, 37(7): 21090294-6.
[11] 赵宇, 武喜凯, 朱伶俐, 杨章, 杨若凡, 管学茂. 碳纳米管对3D打印混凝土流变性能及力学性能的影响[J]. 材料导报, 2023, 37(6): 21080137-6.
[12] 刘文憬, 李元东, 宋赵熙, 毕广利, 杨昊坤, 曹杨婧. Sr+Er复合变质对AlSi10MnMg合金微观组织、导热及力学性能的影响[J]. 材料导报, 2023, 37(6): 21090239-7.
[13] 高志玉, 樊献金, 高思达, 薛维华. 基于多模型机器学习的合金结构钢回火力学性能研究[J]. 材料导报, 2023, 37(6): 21090025-7.
[14] 王嘉乐, 左雨欣, 王越锋, 陈洪立, 刘宜胜, 胡雨倞, 于影, 左春柽. ZnO@PAN抗腐蚀薄膜的制备、力学性能分析及在铝-空气电池中的应用研究[J]. 材料导报, 2023, 37(6): 21080088-6.
[15] 谢吉林, 彭程, 谢菀新, 淦萌萌, 章文滔, 吴集思, 陈玉华. 铝/镁异种合金磁脉冲焊接接头组织与性能研究[J]. 材料导报, 2023, 37(5): 22010051-5.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed