Effect of Carbides on NiAl Precipitates and Mechanical Properties in NiAl-precipitation-strengthened Ferritic Heat-resistant Steels
YANG Daokuan1,2, QIU Nianshuang1,2, ZUO Xiaowei1,2,*
1 Key Laboratory of Electromagnetic Processing of Materials (Ministry of Education), Northeastern University, Shenyang 110819, China 2 School of Metallurgy, Northeastern University, Shenyang 110819, China
Abstract: Traditional ferritic heat-resistant steel is mainly strengthened by carbides, while the new ferritic heat resistant steel is mainly strengthened by NiAl precipitates. The main factor of limiting the application of NiAl strengthened ferritic heat resistant steel is poor ductility at room temperature. In this study, by adding carbon content in NiAl strengthened ferritic heat resistant steel, the interaction between carbide and NiAl precipitates and the effect on the mechanical properties were studied. The results show that with the increase of carbon content, carbides increase, and the morphology of carbides at grain boundaries is transformed from discontinuous block-like to continuously distributed strip-like. The precipitation of carbides decreases the lattice misfit between α-Fe matrix and NiAl precipitates. The mean radius of NiAl precipitates decreases by 30 nm approximately, and the volume fraction slightly decreases. The hardness, strength and ductility of the steels are improved. The results provide fundamental guidance for the ductility improvement of NiAl strengthened ferritic heat-resistant steel.
1 Ning B Q, Yan Z S, Fu J C, et al. Materials Reports, 2009, 23 (7), 72 (in Chinese). 宁保群, 严泽生, 付继成, 等. 材料导报, 2009, 23(7), 72. 2 Paul V T, Saroja S, Vijayalakshmi M. Journal of Nuclear Materials, 2008, 378, 273. 3 Kim C S, Kwun S I, Park I K. Journal of Nuclear Materials, 2008, 377, 496. 4 Sawada K, Suzuki K, Kushima H, et al. Materials Science and Enginee-ring A, 2008, 480, 558. 5 Kim B, Jeong C, Lim B. Materials Science and Engineering A Structural Materials Properties, Microstructure and Processing, 2008, 483-484, 544. 6 Du B N, Sheng L Y, Lai C, et al. Rare Metal Materials and Enginee-ring, 2017, 46 (8), 2123(in Chinese). 都贝宁, 盛立远, 赖琛, 等. 稀有金属材料与工程, 2017, 46(8), 2123. 7 Danielsen H K, Di Nunzio P E, Hald J. Metallurgical and Materials Transactions A, 2013, 44, 2445. 8 Rashidi M, Golpayegani A, Sheikh S, et al. Materials & Design, 2018, 158, 237. 9 Teng Z K, Zhang F, Miller M K, et al. Intermetallics, 2012, 29, 110. 10 Jiang S H, Wang H, Wu Y, et al. Nature, 2017, 544, 460. 11 Huang S Y, Gao Y F, An K, et al. Acta Materialia, 2015, 83, 137. 12 Cho K, Ikeda K, Yasuda H Y. Materials Science and Engineering A, 2018, 728, 239. 13 Cho K, Kawahara N, Yasuda H Y. ISIJ International, 2020, 60, 2285. 14 Rawlings M J S, Liebscher C H, Asta M, et al. Acta Materialia, 2017, 128, 103. 15 Teng Z K, Liu C T, Miller M K, et al. Materials Science and Engineering A, 2012, 541, 22. 16 Edahiro T, Kouzai K, Yasuda H Y. Acta Materlalia, 2013, 61, 1716. 17 Gao Y H, Liu S Z, Hu X B, et al. Materials Science and Engineering A, 2019, 759, 298. 18 Ma W B, Liu G Q, Hu B F, et al. Rare Metal Materials and Engineering, 2014, 43(1), 109(in Chinese). 马文斌, 刘国权, 胡本芙, 等. 稀有金属材料与工程, 2014, 43(1), 109. 19 Kabakci F, Acarer M, Baydogan M, et al. Metallurgical and Materials Transactions A-Physical Metallurgy and Materials Science, 2021, 52, 129. 20 Wang F G, Zhu S M, Zhu S J, et al. Acta Metallurgica Sinica, 1991, 27(4), 54 (in Chinese). 王富岗, 祝苏明, 朱世杰, 等. 金属学报, 1991, 27(4), 54. 21 Teng Z K, Liu C T, Ghosh G, et al. Intermetallics, 2010, 18, 1437. 22 Zhang R H, Zhang C, Xia Z X, et al. Acta Metallurgica Sinica, 2013, 49 (9), 1075(in Chinese). 张芮辉, 张弛, 夏志新, 等. 金属学报, 2013, 49(9), 1075. 23 Wu W F, Gao N, Liu X W, et al. Materials Letters, 2021, 298, 130020. 24 Wang J Q, Jin X L, Leng Y X, et al. Hot Working Technology, 2021, 50(5), 35 (in Chinese). 王佳祺, 靳旭乐, 冷宇轩, 等. 热加工工艺, 2021, 50(5), 35. 25 Baik S I, Rawlings M J S, David D C. Materials Science and Engineering A, 2020, 776, 138987. 26 Cui Z Q, Tan Y C. Metalology and heat treatment, China Machine Press, China, 2007, pp. 199 (in Chinese). 崔忠圻, 覃耀春. 金属学与热处理, 机械工业出版社, 2007, pp. 199. 27 Zhao W X, Zhou D Q, Jiang S H, et al. Materials Science and Enginee-ring A, 2018, 738, 295. 28 Yin J W, Effect of Carbon content on high temperature properties of Cr-Mo-V hot work die steel. Master’s Thesis, Kunming University of Science and Technology, China, 2019(in Chinese). 殷军伟. 碳含量对Cr-Mo-V系热作模具钢高温性能的影响研究. 硕士学位论文, 昆明理工大学, 2019. 29 Wen P, Tao G, Ren B X, et al. Journal of Applied Mechanics, 2015(6), 8(in Chinese). 闻鹏, 陶钢, 任保祥, 等. 应用力学学报, 2015(6), 8. 30 Qi Y H, Li H, Han P, et al. Rare Metal Materials and Engineering, 2008, 37(5), 887(in Chinese). 齐义辉, 李慧, 韩萍, 等. 稀有金属材料与工程, 2008, 37(5), 887 31 Wang Z W, Baker I, Cai Z H, et al. Acta Materialia, 2016, 120, 228.