Please wait a minute...
材料导报  2020, Vol. 34 Issue (23): 23138-23144    https://doi.org/10.11896/cldb.20100102
  金属与金属基复合材料 |
金刚石工具钎焊用连接材料研究进展
龙伟民1,2,†, 郝庆乐1,†, 傅玉灿3, 黄国钦4, 吴铭方5, 王裕昌6
1 郑州机械研究所有限公司新型钎焊材料与技术国家重点实验室,郑州 450001
2 中机智能装备创新研究院(宁波)有限公司,宁波 315700
3 南京航空航天大学机电学院,南京 211106
4 华侨大学制造工程研究院,厦门 361021
5 江苏科技大学材料科学与工程学院,镇江 212003
6 河南黄河旋风股份有限公司,许昌 461500
Research Progress of Filler Metals for Brazing Diamond Tools
LONG Weimin1,2,†, HAO Qingle1,†, FU Yucan3, HUANG Guoqin4, WU Mingfang5, WANG Yuchang6
1 State Key Laboratory of Advanced Brazing Filler Metals and Technology, Zhengzhou Research Institute of Mechanical Engineering Co. Ltd., Zhengzhou 450001, China
2 China Innovation Academy of Intelligent Equipment Co., Ltd., Ningbo 315700, China
3 College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
4 Institution of Manufacture Engineering, Huaqiao University, Xiamen 361021, China
5 School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China
6 Henan Huanghe Whirlwind Co., Ltd., Xuchang 461500, China
下载:  全 文 ( PDF ) ( 8754KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 金刚石在已知材料中具有最高的硬度,特别适合切割和磨削玻璃、石材、陶瓷等硬质材料。自1954年首颗人造金刚石被成功合成以后,金刚石工具就迅速在汽车制造、机械工程、石油钻探、国防军工等领域推广应用。金刚石颗粒需要被固结在金属基体上,其制备方法主要有三类,分别为电镀、热压烧结和钎焊。相对于其他两种方法,钎焊法是利用钎焊材料作为连接介质,在更高温度下实现金刚石与金属基体的连接技术。钎焊金刚石工具金刚石颗粒出露度高、锋利度更好。
金刚石表面具有很高的化学惰性。为了设计出性能优良的钎焊材料,研究者在金刚石与金属的交互作用方面开展了大量的研究,发现过渡金属原子3d电子轨道上空位的多少决定其与金刚石的交互作用行为,并据此将过渡金属元素分为三类,即无交互作用类、促进石墨化类和反应生成碳化物类。钛(Ti)、铬(Cr)、钒(V)、锆(Zr)等金属元素与金刚石的碳反应形成碳化物,能够实现金刚石颗粒的牢固连接,可作为金刚石工具钎料中的活性元素,但这些元素往往具有较高的熔点,高温钎焊易导致金刚石石墨化。为了降低钎料熔点,常常将上述金属组合使用。
目前金刚石工具钎料主要有银铜钛基(Ag-Cu-Ti)、铜锡钛基(Cu-Sn-Ti)、镍铬基(Ni-Cr)等,三者的熔化温度以及强度和耐磨性能依次上升。近年来,研究者对三类钎料在金刚石钎焊过程中的作用进行了深入研究,发现活性元素通过反应润湿实现金刚石与金属的冶金结合,反应润湿过程存在元素复杂的交叉扩散,反应物种类、形貌、数量、分布等强烈依赖工艺条件,并且熔融钎料也通过热量传递和材料侵蚀造成金刚石表面损伤。为了减少金刚石的强度损失,在成分设计上,研究者优化了三类钎料活性元素含量,通过加入铟、磷、稀土等元素,或利用铜辊急冷的方法将钎料制备成非晶钎料,成功实现钎料降熔。随着激光钎焊等高效钎焊方法的应用,Ni-Cr钎料受到了很大的关注,但快速热循环条件下金刚石与钎料连接界面易开裂,目前的研究初步阐明了裂纹启裂、扩展行为,并认为其与金刚石和钎料热膨胀系数的失配有关,其强韧化机理仍有待深入探讨。
本文首先介绍了金刚石微粒的焊接特性,阐述了钎焊金刚石工具用钎料设计的基本原理及其连接机理,然后着重综述了国内外在Ag-Cu-Ti、Cu-Sn-Ti、Ni-Cr等三大类钎料钎焊金刚石工具方面的研究现状,最后介绍了近年来出现的新型钎焊材料,指出了钎焊金刚石工具用钎料的现存问题和研究方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
龙伟民
郝庆乐
傅玉灿
黄国钦
吴铭方
王裕昌
关键词:  金刚石  钎焊材料  银铜钛基  铜锡钛基  镍铬基    
Abstract: Because of its highest hardness among all known materials, diamond is especially suitable for cutting and grinding hard materials such as glass, stone, ceramics and so on. Diamond tools have been utilized in area of automobile manufacturing, mechanical engineering, oil drilling and military industries since the first synthetic diamond was successfully made in 1954. Diamond grits, which are very small with irregular shape, have to be bonded with the metal substrate. There are mainly three methods for diamond tools preparation. They are electroplating, sintering and brazing. Compared with electroplating and sintering, brazing can join diamond grits and metal substrate at higher temperature. The brazing filler metal is the medium between the two things, which is helpful for the diamond retention. As a result, brazed diamond tools have advantages of high exposure height and outstanding sharpness.
Diamond grits feature low reactivity at ambient temperature. In order to design excellent brazing materials, researchers conducted research on the interaction between diamond and metal. They found that the number of vacancies in the 3d electron orbits of transition metal determines the interaction behavior with diamond. With respect to their behavior towards carbon, transition metals can be roughly divided into three groups: non interacting metals, graphitization catalyzer, and carbide former. Titanium (Ti), chromium (Cr), vanadium (V), zirconium (Zr) can actively react with carbon of diamond to form carbides, which can realize the firm holding of diamond particles. However, these active elements have high mel-ting temperature. High temperature leads to graphitization of diamond. In order to decrease the melting temperature of the brazing filler metal, the three types of transition metals mentioned above are often used in combination.
At present, filler metal for brazed diamond tool mainly includes Ag-Cu-Ti, Cu-Sn-Ti and Ni-Cr. Ag-Cu-Ti provides the lowest melting temperature as well as tensile strength and wear resistance. Ni-Cr provides the highest. In recent years, researchers have conducted many studies on the function of these brazing filler metals in the diamond brazing process. Results showed that the active elements make diamond and metal substrate metallurgically bonded through reactive wetting. This is a complex process with cross diffusion of elements. The type, morphology, quantity and distribution of reactants strongly depend on the process conditions. The molten filler metal causes damage of diamond grits through heat transfer and catalyzer attack. In order to reduce the damage of diamond, researchers optimized the composition of brazing filler metal, adjusted the content of active elements. The melting temperature of filler metals was successfully decreased by addition of indium, phosphorus, rare earth element into present filler metal. The other new way to decrease the melting temperature of one certain filler metal is fabrication its amorphous counterpart. Ni-Cr brazing filler metal was paid great attention in the past several year with the application of high-efficiency brazing methods such as laser brazing. Laser welding is characterized by fast heating and cooling. The interface between diamond and brazing filler metal is prone to cracking under rapid thermal cycling conditions. The cracking behavior was believed to be related to the mismatch of the thermal expansion coefficient of diamond and brazing filler metal. The strengthening and toughening mechanism remains to be explored in the future.
In this work, the brazing characteristics of diamond grits are introduced and the principles of designing the filler metals for diamond tools are explained. Then we discusses jointing mechanism between diamond grits and metals. The current research on Ag-Cu-Ti, Cu-Sn-Ti, Ni-Cr brazing filler metals are paid the most attention. Besides, some novel filler metals emerged in recent years are evaluated, and suggestions on the future fundamental research are made.
Key words:  diamond    brazing filler metal    Ag-Cu-Ti    Cu-Sn-Ti    Ni-Cr
               出版日期:  2020-12-10      发布日期:  2020-12-24
ZTFLH:  TG425  
基金资助: 河南省重大关键技术需求揭榜攻关项目(191110111000);宁波市“3315”人才计划2020年创新团队C类
通讯作者:  brazelong@163.com   
作者简介:  龙伟民,现任中机智能装备创新研究院(宁波)有限公司总经理、新型钎焊材料与技术国家重点实验室主任,研究员、博士研究生导师,全国创新争先奖获得者、国家“万人计划”科技创新领军人才、国务院特贴专家。主要从事新型钎焊材料及其生产技术、钎焊工艺与设备研发及应用,主持国家973计划、863计划、科技支撑计划、科研院所技术开发研究专项资金、河南省高新技术产业化等科研项目40余项。在国内外学术期刊上发表论文320余篇,出版专著18部、授权专利86项。近年来作为第一获奖人获国家科技进步二等奖1项,河南省技术发明奖一等奖1项、科技进步奖一等奖2项,中国机械工业科学技术奖特等奖1项、一等奖3项。荣获中央企业先进职工、机械科学研究总院杰出复合型专家、河南省科技创新杰出人才、郑州市专业技术拔尖人才等各类荣誉称号30余次。
郝庆乐,博士,悉尼科技大学访问学者,2018年毕业于北京科技大学。现为郑州机械研究所有限公司新型钎焊材料与技术国家重点实验室博士后。申请专利22件(国外专利2件),授权6件,发表学术论文18篇,其中SCI/EI 4篇,荣获河南省科技进步奖二等奖1项。主要研究方向为稀贵金属材料成分设计及制品成形技术。
引用本文:    
龙伟民, 郝庆乐, 傅玉灿, 黄国钦, 吴铭方, 王裕昌. 金刚石工具钎焊用连接材料研究进展[J]. 材料导报, 2020, 34(23): 23138-23144.
LONG Weimin, HAO Qingle, FU Yucan, HUANG Guoqin, WU Mingfang, WANG Yuchang. Research Progress of Filler Metals for Brazing Diamond Tools. Materials Reports, 2020, 34(23): 23138-23144.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20100102  或          http://www.mater-rep.com/CN/Y2020/V34/I23/23138
1 Bai Q, Yao Y, Chen S. International Journal of Refractory Metals and Hard Materials,2002,20(5),395.
2 Wu Y P, Yan Q Z. Diamond & Abrasives Engineering,2019,39(2),37(in Chinese).
吴燕平,燕青芝.金刚石与磨料磨具工程,2019,39(2),37.
3 Hua Y, Li Y P, Jiang D G. Diamond & Abrasives Engineering,2004(5),4(in Chinese).
华勇,李亚萍,蒋登高.金刚石与磨料磨具工程,2004(5),4.
4 Cong M H, Xu D M, Qi W, et al. Diamond & Abrasives Engineering,2011,31(2),62(in Chinese).
丛明辉,徐冬梅,齐维,等.金刚石与磨料磨具工程,2011,31(2),62.
5 Chen F, Liang H, Yin S, et al. Journal of Materials Research,2019,34(10),1734.
6 Hou Y G, Wang G M, Jing Y J. China Ceramics,2002(4),13(in Chinese).
侯永改,王改民,荆运杰.中国陶瓷,2002(4),13.
7 Wegener K, Weingärtner E, Blaser M. CIRP Annals,2013,62(1),339.
8 Wang S X, Liu X J, Geng B, et al. Diamond & Abrasives Engineering,2006(4),71(in Chinese).
王双喜,刘雪敬,耿彪,等.金刚石与磨料磨具工程,2006(4),71.
9 Lin C R, Kuo C T. Surface and Coatings Technology,1998,110(1),19.
10 Huang Z W, Liu W S, Lu H Y, et al. Diamond & Abrasives Enginee-ring,2007(5),27(in Chinese).
黄志伟,刘文生,卢汇洋,等.金刚石与磨料磨具工程,2007(5),27.
11 Chattopadhyay A K, Chollet L, Hintermann H E. Journal of Materials Science,1991,26(18),5093.
12 Trenker A, Seidcmann H. Industrial Diamond Review,2002,1,49.
13 Lee S T, Lin Z, Jiang X. Materials Science & Engineering R,1999,25(4),123.
14 Yang J L. Acta Physico-Chimica Sinica,2017,33(3),445(in Chinese).
杨金龙.物理化学学报,2017,33(3),445.
15 Huang Q, Yu D, Xu B, et al. Nature,2014,510(7504),250.
16 Pierson O H. Handbook of carbon, graphite, diamond and fullerenes properties, processing and applications, Park Ridge: Noyes Publications, USA,1994.
17 Fedoseev D V, Vnukov S P, Bukhovets V L, et al. Surface and Coatings Technology,1986,28(2),207.
18 Butenko Y V, Kuznetsov V L, Chuvilin A L, et al. Journal of Applied Physics,2000,88(7),4380.
19 Sung C, Tai M. International Journal of Refractory Metals and Hard Materials,1997,15(4),237.
20 Tillmann W, Ferreira M, Steffen A, et al. Diamond and Related Mate-rials,2013,38,118.
21 Oliveira L J de, Cabral S C, Filgueira M. International Journal of Refractory Metals and Hard Materials,2012,35,228.
22 Cabral S C, Oliveira L J de, Filgueira M. Materials Science Forum,2012,727-728,275.
23 Bai H, Dai D, Yu J H, et al. Applied Surface Science,2014,292,790.
24 Wang Y H, Zang J B, Wang M Z, et al. Journal of Materials Processing Technology,2002,129(1),369.
25 Andreyev A V. Diamond and Related Materials,1994,3(10),1262.
26 Wu M, Chang L, Zhang L, et al. Surface and Coatings Technology,2017,325,490.
27 Eustathopoulos N. Current Opinion in Solid State and Materials Science,2005,9(4-5),152.
28 Liao X, Mu D, Wang J, et al. International Journal of Refractory Metals and Hard Materials,2017,66,252.
29 Klotz U E, Liu C, Khalid F A, et al. Materials Science and Engineering: A,2008,495(1-2),265.
30 Wang C Y, Zhou Y M, Zhang F L, et al. Journal of Alloys and Compounds,2009,476(1-2),884.
31 Sung M, Sung J C. Diamond & Abrasives Engineering,2009,27(2),382.
32 Li D, Zhao M, Sun F L, et al. Journal of Harbin University of Science and Technology,2000(3),101(in Chinese).
李丹,赵密,孙凤莲,等.哈尔滨理工大学学报,2000(3),101.
33 Palavra A, Fernandes A J S, Serra C, et al. Diamond and Related Materials,2001,10(3),775.
34 Buhl S, Leinenbach C, Spolenak R, et al. Journal of Materials Science,2010,45(16),4358.
35 Klotz U E, Khalid F A, Elsener H R. Diamond and Related Materials,2006,15(10),1520.
36 Yamazaki T, Suzumura A. Journal of Materials Science,2006,41(19),6409.
37 Hsieh Y, Lin S. Journal of Alloys and Compounds,2008,466(1-2),126.
38 Khalid F A, Klotz U E, Elsener H R, et al. Scripta Materialia,2004,50(8),1139.
39 Huang S, Tsai H, Lin S. Materials Chemistry and Physics,2004,84(2-3),251.
40 Gao X Z, Xiao B, Guan H J, et al. Diamond & Abrasives Engineering,2018,38(1),32(in Chinese).
高先哲,肖冰,管海军,等.金刚石与磨料磨具工程,2018,38(1),32.
41 Leinenbach C, Transchel R, Gorgievski K, et al. Journal of Materials Engineering and Performance,2015,24(5),2042.
42 Zhao P C, Yan X L, Xiao B, et al. Diamond & Abrasives Engineering,2020,40(3),52(in Chinese).
赵鹏程,闫薪霖,肖冰,等.金刚石与磨料磨具工程,2020,40(3),52.
43 Zhang Q Y, Zhuang H S. Brazing and soldering manual, China Machine Press, China,2018(in Chinese).
张启运,庄鸿寿.钎焊手册,机械工业出版社,2018.
44 Artini C, Muolo M L, Passerone A. Journal of Materials Science,2011,47(7),3252.
45 Mukhopadhyay P, Raghava S D, Ghosh A. Journal of Materials Proces-sing Technology,2017,250,390.
46 Lu J B, He Y X, Zhang W X, et al. The Chinese Journal of Nonferrous Metals,2016,26(3),610(in Chinese).
卢金斌,贺亚勋,张旺玺,等.中国有色金属学报,2016,26(3),610.
47 Sun B, Xiao B. Diamond and Related Materials,2018,85,98.
48 Huang G, Huang J, Zhang M,et al. Journal of Materials Processing Technology,2018,260,123.
49 Lu J B, Meng P, Fan P, et al. Transactions of the China Welding Institution,2012,33(9),65(in Chinese).
卢金斌,孟普,樊平,等.焊接学报,2012,33(9),65.
50 Yang Z, Liu A, Yang R, et al. Rare Metal Materials and Engineering,2016,45(5),1152.
51 Akbari M, Buhl S, Leinenbach C, et al. Mechanics of Materials,2012,52,69.
52 Meng F, Liu A, Sun H, et al. Transactions of the Indian Institute of Metals,2015,68(5),829.
53 Xiong L Y, Xue S B, Wang H. Welding & Joining,2017(12),9(in Chinese).
熊丽媛,薛松柏,王禾.焊接,2017(12),9.
54 Zhao N, Huang M L, Zhong Y, et al. Journal of Materials Science: Materials in Electronics,2015,26(1),345.
55 Dai Q L, Luo C B, Xu X P, et al. Journal of Materials Processing Technology,2002,129(1),427.
56 Zou Q H, Wang Z G. Applied Mechanics and Materials,2014,692,200.
57 Sun Y C, Song Y Q, Qu D G. Diamond & Abrasives Engineering,2003(2),41.
孙毓超,宋月清,屈定国.金刚石与磨料磨具工程,2003(2),41.
58 Wu Q, Luo Z, Wang Y, et al. Metals,2018,8(7),495.
59 Wu Q, Luo Z, Wang Y, et al. Journal of Rare Earths,2018,36(11),1226.
60 Duan D, Sun L, Lin Q, et al. International Journal of Refractory Metals and Hard Materials,2019,80,253.
61 Silva D, Thomas L.U.S. patent application, US4160854,1979.
62 Zhang H Y. Research on induction brazing of diamond by crystal and amorphous Ni based solder. Master’s Thesis, Qingdao University of Science & Technology, China,2016(in Chinese).
张涵源.晶态和非晶态Ni基钎料感应钎焊金刚石的研究.硕士学位论文,青岛科技大学,2016.
63 Xuan Q Q. Analysis on microstructure and properties of CuSnTi active filler metal and research on brazed diamond by amorphous CuSnTi filler metal. Master’s Thesis, China Academy of Machinery Science & Tech-nology, China,2017(in Chinese).
轩庆庆.CuSnTi活性钎料组织性能分析及非晶态钎料钎焊金刚石研究.硕士学位论文,机械科学研究总院,2017.
[1] 丛卓红, 陈恒达, 郑南翔, 周晚君. 水泥混凝土路面纹理的研究进展[J]. 材料导报, 2020, 34(9): 9110-9116.
[2] 肖长江, 窦志强, 朱振东. 氧化铁刻蚀金刚石表面形貌的表征及形成机理[J]. 材料导报, 2020, 34(14): 14045-14050.
[3] 侯明, 郭胜惠, 高冀芸, 杨黎, 王梁, 叶小磊. 预合金结合剂成分及烧结工艺对金刚石工具性能的影响[J]. 材料导报, 2019, 33(14): 2403-2407.
[4] 何鹏, 林盼盼. 基于材料基因组理念的钎焊材料开发与智能钎焊技术创新系统工程[J]. 材料导报, 2019, 33(1): 156-161.
[5] 王仕发,李丹明,肖玉华,杨震春,李居平,郝 剑,杨长青. 用于空间辐射环境探测的金刚石探测器研究综述[J]. 《材料导报》期刊社, 2018, 32(9): 1459-1468.
[6] 张晓宇,许旻,曹生珠. 高导热金刚石/铜复合材料界面修饰研究进展[J]. 《材料导报》期刊社, 2018, 32(3): 443-452.
[7] 张旺玺, 王艳芝, 梁宝岩, 李启泉, 罗伟, 孙长红, 成晓哲, 孙玉周. 纳米金刚石基于功能材料应用的研究现状[J]. 《材料导报》期刊社, 2018, 32(13): 2183-2188.
[8] 赵龙, 宋平新, 张迎九, 杨涛. 高导热金刚石/铜电子封装材料:制备技术、性能影响因素、界面结合改善方法[J]. 《材料导报》期刊社, 2018, 32(11): 1842-1851.
[9] 常国,段佳良,王鲁华,王西涛,张海龙. 新一代高导热金属基复合材料界面热导研究进展*[J]. 《材料导报》期刊社, 2017, 31(7): 72-78.
[10] 杨洋, 王罡, 俞建超, 周婷婷, 李遥, 帅茂兵. 无氧铜超精加工表面微观形貌的分形维数表征*[J]. 《材料导报》期刊社, 2017, 31(3): 52-56.
[11] 李慧慧,郭 桦,陈 琛,黄莹祥. 聚晶金刚石复合片表面裂纹视觉检测技术研究[J]. 《材料导报》期刊社, 2017, 31(24): 174-178.
[12] 周阳, 金秋, 龚小玲, 聂朝胤. Ni-金刚石复合涂层的结构优化及基础磨削性能*[J]. 《材料导报》期刊社, 2017, 31(20): 35-38.
[13] 李颖颖, 万隆, 王俊沙, 徐俊杰, 刘莹莹, 李荣辉. 温度对铁基预合金粉腐蚀泡沫化人造金刚石微粉的影响*[J]. 《材料导报》期刊社, 2017, 31(14): 113-116.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed