Please wait a minute...
材料导报  2019, Vol. 33 Issue (1): 156-161    https://doi.org/10.11896/cldb.201901018
  材料与可持续发展(二)——材料绿色制造与加工* |
基于材料基因组理念的钎焊材料开发与智能钎焊技术创新系统工程
何鹏, 林盼盼
哈尔滨工业大学先进焊接与连接国家重点实验室,哈尔滨 150001
The Systematic Project Involving Brazes Development and Intelligent Brazing Technology Innovation: a Materials Genome Perspective
HE Peng, LIN Panpan
State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001
下载:  全 文 ( PDF ) ( 2425KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 近年来,依赖于科学直觉与试错的传统材料研究方法日渐成为制造业发展与技术进步的瓶颈。革新材料研发方法已成为国际新材料研发的趋势。材料基因组技术是材料科学技术的一次飞跃,是新材料研发的“加速器”。钎焊过程的复杂性和随机性使得钎焊材料的设计开发相比普通材料更加复杂、研发周期更长,“材料基因组计划”作为先进材料开发的崭新模式也应及时应用到钎焊材料性能优化及开发中,这对促进钎焊技术尤其是智能钎焊的长足发展具有重要意义。
   材料基因组技术包括高通量材料计算、高通量材料实验和材料数据库三个要素。大规模的高通量计算可提供大量而系统的数据,高通量实验方法可对这些数据进行快速验证,材料数据库的建立则可实现计算数据与实验数据的有效集成,使其相互补充的同时相互验证。三要素协同工作,可以使得材料研发过程中的理论与实验结合更加紧密,加快材料从研发、制造到应用的过程,降低新材料的开发成本。
   开发新型钎焊材料除考虑材料本身的性能外,还需要考虑钎焊材料与母材物理化学性能的匹配性以及连接过程中钎焊材料与母材之间的相互作用(扩散和新相形成)。钎焊材料与母材之间的相互作用非常复杂,除了受到连接工艺(连接温度、保温时间、压力、气氛等)的影响之外,还与钎料和母材的成分有直接关系。因此,相比于普通材料,钎焊材料的设计开发过程更加复杂,需要考虑的因素更多,新材料的研发周期更长,有必要尽快启动钎焊材料基因工程。开发高通量计算软件、高通量实验方法(高通量制备及表征)及数据集成系统是实施钎焊材料基因工程需解决的三个基础问题。
   目前焊接智能化的发展多集中在熔化焊领域,如弧焊、激光焊等,也取得了比较显著的成果。但是,钎焊全过程智能控制的发展相对缓慢,现有研究多集中在钎焊设备及钎焊过程控制方面。钎焊材料制备是智能钎焊的重要组成部分,钎焊材料基因工程的实施将促进钎焊技术的智能化进程。智能焊接尤其是智能钎焊的技术进步可大大简化和缩短新型钎料的试验验证过程,同时能够在过程中搜集到更多实时数据,丰富数据库,因而反过来又会对钎焊材料基因工程的发展起到显著的推动作用。
   本文论述了材料基因组技术的三要素及其国内外研究现状,分析了材料基因组技术应用于钎焊材料开发时需考虑的影响因素及需解决的关键共性基础问题,并且阐述了钎料材料基因工程与智能钎焊相互促进的发展关系。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
何鹏
林盼盼
关键词:  材料基因组  高通量计算  高通量实验  材料数据库  钎焊材料  智能钎焊    
Abstract: In recent years, the conventional material research methodologies depending on scientific intuition and trial and error have been increasingly regarded as the bottleneck for development and technological advance of manufacturing industry. Then, the innovation on material research methodology has become the international new trend of materials research and development. Materials genome technology is considered as a giant leap of materials S&T and the accelerator of new material development. The complexity and randomicity of brazing process make the design and development of brazing materials more complicated and time-consuming than ordinary materials. Materials genome initiative, as a brand new concept for advanced materials development, should also be adopted to the performance optimization and development of new brazing materials. This is of great significance to promote the rapid development of welding technology, especially intelligent welding.
The three main facets of materials genome technology are high-throughput material computation, high-throughput material experimentation and material basic data. Large-scale high-throughput computation can provide abundant and systematic data. High-throughput material experimentation can quickly verify these data. Moreover, the establishment of the material database can realize (i) the effective integration of calculated data with experimental data, and (ii) their mutual complementation and mutual verification. These three elements work together and then contribute to a more close relationship between theoretical and experimental research in the process of material development. This can shorten the period of research, manufacturing and application, and reduces the development cost of new materials.
In addition to the performance of material itself, developing new brazing materials also need to consider (i) physical and chemical compatibility of brazing materials and base materials, (ii) interaction (diffusion and formation of new phase) between brazing materials and base materials during brazing process. The interaction between brazing materials and base materials is very complex, as it not only depends on the brazing process (temperature, holding time, pressure, atmosphere, etc.), but is directly related to the composition of brazes and base materials. Therefore, compared with ordinary materials, the design and development of brazing materials require a more complicated methodology and a more time-consuming course. And the initiation of brazing materials genome project is of great urgency. This relies to a considerable degree on the satisfactory achievement towards three essential engineering issues, i.e. development of high-throughput computing software, high-throughput experimental methodologies and data integration system.
The development of intelligent welding at present has focused mostly on fusion welding, e.g. arc welding, laser welding, etc., and has also acquired notable achievements. However, the full-intelligent control technology for brazing still lies at a fairly primitive level, and the current researches concentrate mainly on brazing equipment and brazing process control. The brazing materials play an important role in intelligent brazing. So the brazing materials genome project can facilitate the intelligentization of brazing technology. In return, the advancement of intelligent brazing will also advance the course of brazing materials genome project, as it will greatly simplify and accelerate the performance examination upon new designed brazes, and in addition, it will help to collect more real-time data for the numerous artificially created brazes.
This paper discusses the three basic elements of materials genome technology and the corresponding global research status. It also analyzes the influence factors and key common problems for the adoption of materials genome technology to brazing materials development, and states dialectically the mutually reinforcing relationship between brazes genome project and intelligent brazing technology.
Key words:  materials genome    high-throughput computation    high-throughput experimentation    material basic data    brazes    intelligent brazing
               出版日期:  2019-01-10      发布日期:  2019-01-24
ZTFLH:  TG454  
基金资助: 国家自然科学基金项目(51805112);河南省科技创新人才计划(174200510010);中国博士后科学基金项目(2018M630349)
作者简介:  何鹏,哈尔滨工业大学材料科学与工程学院教授、博士研究生导师,国家第三批“万人计划”科技创新领军人才,hitheoeng@hit.edu.cn。林盼盼,2018年1月毕业于哈尔滨工业大学,获得工学博士学位。
引用本文:    
何鹏, 林盼盼. 基于材料基因组理念的钎焊材料开发与智能钎焊技术创新系统工程[J]. 材料导报, 2019, 33(1): 156-161.
HE Peng, LIN Panpan. The Systematic Project Involving Brazes Development and Intelligent Brazing Technology Innovation: a Materials Genome Perspective. Materials Reports, 2019, 33(1): 156-161.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.201901018  或          http://www.mater-rep.com/CN/Y2019/V33/I1/156
1 Wang H, Xiang Y, Xiang X D, et al. Science & Technology Review,2015,33(10),13(in Chinese).汪洪,向勇,项晓东,等.科技导报,2015,33(10),13.2 Zhao J C. Chinese Journal of Nature,2014,36(2),89(in Chinese).张继成.自然杂志,2014,36(2),89.3 Fan X L. Materials China,2015,34(9),689(in Chinese).范晓丽.中国材料进展,2015,34(9),689.4 Shen Z C, Dai W, Ma Z L. Spaceraft Environment Engineering,2017,34(3),324(in Chinese).沈自才,代巍,马子良.航天器环境工程,2017,34(3),324.5 Wang H Z, Wang H, Ding H, et al. Science & Technology Review,2015,33(10),31(in Chinese).王海舟,汪洪,丁洪,等.科技导报,2015,33(10),31.6 Yoo Y K, Xue Q, Chu Y S, et al. Intermetallics,2006,14(3),241.7 Mao S S. Journal of Crystal Growth,2013,379,123.8 Tamai T, Naka M. Journal of Materials Science Letters,1996,15,1203.9 Iwamoto C, Matsunaga K, Yamamoto T, et al. Nanotechnology,2004,15(6),S398.10 Paulasto M, Kivilahti J. Journal of Materials Research,2011,13(2),343.11 Niu G B, Wang D P, Yang Z W, et al. Ceramics International,2017,43(1),439.12 Lin P P, Lin T S, He P, et al. Ceramics International,2017,43,13530.13 He Y M, Zhang J, Wang X, et al. Journal of Materials Science,2010,46(8),2796.14 Yang M, Lin T, He P. Ceramics International,2012,38(1),289.15 Yang W Q, Lin T S, He P, et al. Journal of the American Ceramic Society,2013,96(12),3712.16 Zhang G J, Li Y Z. Aeronautical Manufacturing Technology,2016(11),28(in Chinese). 张广军,李永哲.航空制造技术,2016(11),28.17 Chen S B,Lyu N. Electric Welding Machine,2013,43(5),28(in Chinese).陈善本,吕娜.电焊机,2013,43(5),28.18 Deng Y X, Huang S S, Xue J X, et al. Journal of Shenyang University of Technology,2001,23(1),18(in Chinese).邓永翔,黄石生,薛家祥,等.沈阳工业大学学报,2001,23(1),18.19 Lyu X Q, Liu G, Wu Y X. Welding & Joining,2007(5),63(in Chinese).吕学勤,刘刚,吴毅雄.焊接,2007(5),63.20 Ding Z C, Sun M L. Welding Technology,2003,32(5),49(in Chinese).丁正春,孙明亮.焊接技术,2003,32(5),49.21 Xie J X. Welding Technology,2002,31(1),23(in Chinese).
[1] 张冠星, 薛行雁, 龙伟民, 钟素娟, 孙华为, 董宏伟. BAg45CuZn钎料硫化处理组织和性能演变特性[J]. 材料导报, 2019, 33(z1): 425-427.
[2] 王星星, 彭进, 崔大田, 孙国元, 何鹏. 不锈钢表面电镀锡银钎料的润湿特性[J]. 《材料导报》期刊社, 2018, 32(8): 1263-1266.
[3] 王星星, 谭群燕, 薛鹏, 唐明奇, 龙伟民. 镀锡银钎料扩散过渡区的物相和形成机制*[J]. 《材料导报》期刊社, 2017, 31(8): 66-69.
[4] 刘虹志, 彭家根, 肖坤祥. 陶瓷/金属钎焊体系反应润湿及残余热应力缓解的研究进展*[J]. 《材料导报》期刊社, 2017, 31(5): 53-57.
[5] 何培龙, 程方杰, 齐书梅, 肖兵, 赵欢. 冷喷涂Zn粉后5083铝合金的中温钎焊研究*[J]. 《材料导报》期刊社, 2017, 31(4): 52-55.
[6] 王鹏, 高增, 李锦竹, 程东锋, 徐冬霞, 牛济泰. 高体积比SiCp/6063Al复合材料的铝基钎料制备及钎焊工艺研究*[J]. 《材料导报》期刊社, 2017, 31(2): 69-72.
[7] 王鹏,高增,程东锋,牛济泰,. 高体积比SiCp/A356复合材料真空扩散钎焊接头组织与性能研究*[J]. 材料导报编辑部, 2017, 31(22): 75-78.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[9] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[10] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed