Please wait a minute...
材料导报编辑部  2017, Vol. 31 Issue (22): 75-78    https://doi.org/10.11896/j.issn.1005-023X.2017.022.015
  材料研究 |
高体积比SiCp/A356复合材料真空扩散钎焊接头组织与性能研究*
王鹏1,高增1,程东锋1,牛济泰1,2
1 河南理工大学材料科学与工程学院,焦作 454003;
2 河南晶泰航空航天高新材料科技有限公司,焦作 454003
Investigation on the Microstructures and Properties of Vacuum Diffusion Brazed Joints for SiCp/A356 Composites with High SiC Content
WANG Peng1, GAO Zeng1, CHENG Dongfeng1, NIU Jitai1,2
1 School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454003;
2 Henan Jingtai High-Novel Materials Ltd. of Science and Technology, Jiaozuo 454003
下载:  全 文 ( PDF ) ( 611KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用快速甩带技术制备了7组(Al-33.3Cu-6.0Mg)-xNi(x=0, 0.5, 1.0, 2.0, 3.0, 4.0, 5.0,质量分数/%)急冷箔状钎料,分别对化学镀Ni-P合金前后的SiCp/A356复合材料进行真空扩散钎焊。通过剪切实验对钎焊接头的抗剪强度进行测定,并利用扫描电镜和能谱分析等方法对接头微观组织进行观察和分析。结果表明,当向Al-33.3Cu-6.0Mg钎料合金中添加不同含量的Ni时,其急冷钎料的固-液相线(504~522 ℃)变化较小;当w(Ni)=3%且在570 ℃、保温30 min的钎焊工艺下,A356基体/钎料两界面间发生适当的互扩散和溶解现象(585 ℃时出现溶蚀缺欠),且部分钎料/SiC颗粒的接触界面发生Mg参与的化学反应,接头抗剪强度达到64.97 MPa;而在同种钎焊工艺下,对于化学镀Ni-P合金镀层后的SiCp/A356复合材料,其接头处A356基体/Ni-P合金镀层/钎料等接触界面易于形成富含Al、Ni的致密反应层,接头连接质量显著提高,且w(Ni)=4%时,接头抗剪强度达到79.96 MPa。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王鹏
高增
程东锋
牛济泰
关键词:  SiCp/Al复合材料  化学镀Ni-P合金  真空扩散钎焊  显微组织    
Abstract: Using (Al-33.3Cu-6.0Mg)-xNi (wt.% x=0, 0.5, 1.0, 2.0, 3.0, 4.0, 5.0) filler metal foils obtained by rapidly melt-spun technique, vacuum brazed joints of 55% SiCp/A356 composites with and without electroless Ni-P alloy coating were obtained, and their microstructures and bonding strength were analyzed by SEM, EDS and shearing test respectively. Results show that the solidus-liquidus temperatures of the developed foils are close to 504—522 ℃. Without Ni-P alloy coating and using(Al-33.3Cu-6.0Mg)-3Ni filler metal, compact joints were obtained at 570 ℃ and soaking time of 30 min and its shear strength achieved to 64.97 MPa. In the case, proper interdiffusion and dissolution between A356 matrix/filler metal interfaces occurred rather than defect of melting corrosion at 585 ℃, and reaction layer was obtained along the part of filler metal/SiCp interfaces because of chemical reaction with active Mg element effect. While with Ni-P alloy coating, compact reaction layers rich in Al and Ni elements tended to be formed along the A356 matrix/Ni-P alloy coating/filler metal foil interfaces at 570 ℃ and soaking time of 30 min. Consequently, the joint adhesion was improved significantly and a higher shear strength of 79.96 MPa was obtained by using (Al-33.3Cu-6.0Mg)-4Ni filler metal foil.
Key words:  SiCp/Al composites    electroless plated Ni-P alloy coating    vacuum brazing    microstructure
                    发布日期:  2018-05-08
ZTFLH:  TG454  
基金资助: *国家自然科学基金(51245008);河南省教育厅科学技术研究重点项目(15A430026)
通讯作者:  高增,男,1983年生,讲师,主要研究方向为复合材料焊接及数值模拟E-mail:mrgaozeng@163.com   
作者简介:  王鹏:男,1987年生,博士研究生,主要研究方向为复合材料先进连接技术E-mail:wangpeng88626@163.com
引用本文:    
王鹏,高增,程东锋,牛济泰,. 高体积比SiCp/A356复合材料真空扩散钎焊接头组织与性能研究*[J]. 材料导报编辑部, 2017, 31(22): 75-78.
WANG Peng, GAO Zeng, CHENG Dongfeng, NIU Jitai,. Investigation on the Microstructures and Properties of Vacuum Diffusion Brazed Joints for SiCp/A356 Composites with High SiC Content. Materials Reports, 2017, 31(22): 75-78.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.022.015  或          http://www.mater-rep.com/CN/Y2017/V31/I22/75
1 Yu Z H, Zhang J Y, Zhou X L, et al. Research and development on thermal conductivity of SiC/Al composites applied to electronic packaging[J]. Met Funct Mater, 2009,16(1):59.
2 Guo M, Liu J, Li Y. Microstructure and properties of SiC p/Al electronic packaging shell produced by liquid-solid separation[J]. Trans Nonferr Met Soc China, 2014,24(4):1039.
3 Li L Q, Zuo Z C, Tao W, et al. Welded joints fracture behavior of laser in-situ welding of high volume fraction SiCp/2024Al MMC[J]. Trans China Weld Inst, 2012(4):61(in Chinese).
李俐群, 左智成, 陶汪, 等. 高比分SiCp/2024铝基复合材料激光原位焊接头断裂行为[J]. 焊接学报, 2012(4):61.
4 Lei Y C, Hu W X, Xue H L, et al. Influence of Ti-Al-Si-Mg on microstructure and mechanical properties of plasma arc in-suit welded joint of SiCp/Al MMCS[J]. Trans China Weld Inst, 2011,32(5):9(in Chinese).
雷玉成, 胡文祥, 薛厚禄, 等. Ti-Al-Si-Mg对SiCp/Al基复合材料等离子弧原位焊接焊缝组织和性能的影响[J]. 焊接学报, 2011,32(5):9.
5 Wang B, Jiang S S, Zhang K F. Pulse current auxiliary TLP diffusion bonding of SiCp/2024Al composite sheet using mixed Al-Cu-Ti powder interlayer[J]. Int J Adv Manuf Technol, 2013,65(9-12):1779.
6 Wang P, Xu D X, Cheng D F, et al. Active brazing filler metal on SiC particle reinforced aluminium matrix composites[J]. Sci Technol Weld Join, 2015,20(5):361.
7 Wang D, Wang Q Z, Xiao B L, et al. Achieving friction stir welded SiCp/Al-Cu-Mg composite joint of nearly equal strength to base material at high welding speed[J]. Mater Sci Eng A, 2014,589(2):271.
8 Wang P, Gao Z, Niu J. Micro-nano filler metal foil on vacuum brazing of SiCp/Al composites[J]. Appl Phys A, 2016,122(6):592.
9 Su Y, Chen Y Q, Ding H L, et al. Microstructure and precipitation process of rapidly solidified Al-Cu-Mg-Fe-Ni alloy[J]. Chin J Rare Met, 2002,26(4):253(in Chinese).
苏勇, 陈翌庆, 丁厚福, 等. 快速凝固Al-Cu-Mg-Fe-Ni合金的显微组织和析出过程[J]. 稀有金属, 2002,26(4):253.
10 Aburada T, Fitz-Gerald J M, Scully J R. Pitting and dealloying of solute-Rich Al-Cu-Mg-based amorphous alloys: Effect of alloying with minor concentrations of nickel[J]. J Electrochem Soc, 2011,158(9):C253.
11 Aburada T, ünlü N, Fitz-Gerald J M, et al. Effect of Ni as a minority alloying element on the corrosion behavior in Al-Cu-Mg-(Ni) metallic glasses[J]. Scr Mater, 2008,58(8):623.
12 Fang M, Hu L, Yang L, et al. Electroless coating and growth kinetics of Ni-P alloy film on SiCp/Al composite with high SiC volume fraction[J]. Trans Nonferr Met Soc China, 2016,26(3):799.
13 Yadav T P, Mukhopadhyay N K, Tiwari R S, et al. Formation of Al3Ni2-type nanocrystalline 3 phases in the Al-Cu-Ni system by mechanical alloying[J]. Phil Mag Lett, 2007,80(87):781.
14 车荫昌,梁英教. 无机物热力学数据手册[M]. 沈阳:东北大学出版社, 1993.
15 Choi W K, Lee H M. Effect of soldering and aging time on interfacial microstructure and growth of intermetallic compounds between Sn-3.5Ag solder alloy and Cu substrate[J]. J Electron Mater, 2000,29(10):1207.
16 Yi Y C, Zhou G, Ju W P, et al. Effect of alloying element on the wettability and corrosion resistance of low-tin solders[J]. Trans China Weld Inst, 1990(1):50(in Chinese).
易蕴琛, 周钢, 鞠为平, 等. 合金元素对低锡钎料润湿性和抗腐蚀性能的影响[J]. 焊接学报, 1990(1):50.
[1] 洪起虎, 燕绍九, 陈翔, 李秀辉, 舒小勇, 吴廷光. GO添加量对RGO/Cu复合材料组织与性能的影响[J]. 材料导报, 2019, 33(z1): 62-66.
[2] 平学龙, 符寒光, 孙淑婷. 激光熔覆制备硬质颗粒增强镍基合金复合涂层的研究进展[J]. 材料导报, 2019, 33(9): 1535-1540.
[3] 王川, 李德富. 冷轧变形量对5A02铝合金管材组织和性能的影响[J]. 材料导报, 2019, 33(8): 1361-1366.
[4] 王应武, 左孝青, 冉松江, 孔德昊. TiB2含量及T6热处理对原位TiB2/ZL111复合材料显微组织和硬度的影响[J]. 材料导报, 2019, 33(8): 1371-1375.
[5] 温丽, 薛松柏, 马超力, 龙伟民, 钟素娟. 钎焊温度对纳米银焊膏真空钎焊Ni200合金接头组织与性能的影响[J]. 材料导报, 2019, 33(3): 386-389.
[6] 方振邦, 张志强, 李颖, 尹华, 邢艳双, 何长树. 7N01S-T5铝合金厚板搅拌摩擦焊接头的晶间腐蚀行为[J]. 材料导报, 2019, 33(2): 304-308.
[7] 陈永城, 罗子艺, 张宇鹏, 易耀勇, 李明军. 紫铜/304不锈钢激光焊接接头显微组织及力学性能[J]. 材料导报, 2019, 33(2): 325-329.
[8] 产玉飞, 陈长军, 张敏. 金属增材制造过程的在线监测研究综述[J]. 材料导报, 2019, 33(17): 2839-2846.
[9] 于晓全,樊丁,黄健康,李春玲. 铝/钢电弧辅助激光对接熔钎焊接头组织及力学性能[J]. 材料导报, 2019, 33(15): 2479-2482.
[10] 王云鹏,胡嘉玮,许小云,刘道峰,蒋洪章,王晓勇,颜银标. 多向锻造对铝合金组织与性能影响的研究进展[J]. 材料导报, 2019, 33(13): 2266-2271.
[11] 陈伟, 邱长军, 闫梦达, 贺沅玮, 张净宜, 齐林森. 添加松香和淀粉对铁基合金粉末激光成形试样组织和力学性能的影响[J]. 材料导报, 2019, 33(11): 1848-1852.
[12] 郭浩冉, 高古辉, 桂晓露, 白秉哲. 显微组织对贝氏体钢筋氢脆敏感性的影响[J]. 材料导报, 2019, 33(10): 1717-1722.
[13] 徐帅, 陈灵芝, 曹书光, 贾皓东, 周张健. 先进核能系统用ODS钢的显微组织设计与调控研究进展[J]. 材料导报, 2019, 33(1): 78-89.
[14] 薛克敏, 薄冬青, 李萍. 轧制态7A60铝合金的热压缩显微组织及流变行为[J]. 《材料导报》期刊社, 2018, 32(8): 1306-1310.
[15] 袁战伟, 李付国, 王春伟, 王瑜, 郭亚杰, 周亮. 基于Murty准则的SiCp/Al复合材料热加工图研究[J]. 《材料导报》期刊社, 2018, 32(4): 657-661.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed