Please wait a minute...
材料导报编辑部  2017, Vol. 31 Issue (22): 75-78    https://doi.org/10.11896/j.issn.1005-023X.2017.022.015
  材料研究 |
高体积比SiCp/A356复合材料真空扩散钎焊接头组织与性能研究*
王鹏1,高增1,程东锋1,牛济泰1,2
1 河南理工大学材料科学与工程学院,焦作 454003;
2 河南晶泰航空航天高新材料科技有限公司,焦作 454003
Investigation on the Microstructures and Properties of Vacuum Diffusion Brazed Joints for SiCp/A356 Composites with High SiC Content
WANG Peng1, GAO Zeng1, CHENG Dongfeng1, NIU Jitai1,2
1 School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454003;
2 Henan Jingtai High-Novel Materials Ltd. of Science and Technology, Jiaozuo 454003
下载:  全 文 ( PDF ) ( 611KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用快速甩带技术制备了7组(Al-33.3Cu-6.0Mg)-xNi(x=0, 0.5, 1.0, 2.0, 3.0, 4.0, 5.0,质量分数/%)急冷箔状钎料,分别对化学镀Ni-P合金前后的SiCp/A356复合材料进行真空扩散钎焊。通过剪切实验对钎焊接头的抗剪强度进行测定,并利用扫描电镜和能谱分析等方法对接头微观组织进行观察和分析。结果表明,当向Al-33.3Cu-6.0Mg钎料合金中添加不同含量的Ni时,其急冷钎料的固-液相线(504~522 ℃)变化较小;当w(Ni)=3%且在570 ℃、保温30 min的钎焊工艺下,A356基体/钎料两界面间发生适当的互扩散和溶解现象(585 ℃时出现溶蚀缺欠),且部分钎料/SiC颗粒的接触界面发生Mg参与的化学反应,接头抗剪强度达到64.97 MPa;而在同种钎焊工艺下,对于化学镀Ni-P合金镀层后的SiCp/A356复合材料,其接头处A356基体/Ni-P合金镀层/钎料等接触界面易于形成富含Al、Ni的致密反应层,接头连接质量显著提高,且w(Ni)=4%时,接头抗剪强度达到79.96 MPa。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王鹏
高增
程东锋
牛济泰
关键词:  SiCp/Al复合材料  化学镀Ni-P合金  真空扩散钎焊  显微组织    
Abstract: Using (Al-33.3Cu-6.0Mg)-xNi (wt.% x=0, 0.5, 1.0, 2.0, 3.0, 4.0, 5.0) filler metal foils obtained by rapidly melt-spun technique, vacuum brazed joints of 55% SiCp/A356 composites with and without electroless Ni-P alloy coating were obtained, and their microstructures and bonding strength were analyzed by SEM, EDS and shearing test respectively. Results show that the solidus-liquidus temperatures of the developed foils are close to 504—522 ℃. Without Ni-P alloy coating and using(Al-33.3Cu-6.0Mg)-3Ni filler metal, compact joints were obtained at 570 ℃ and soaking time of 30 min and its shear strength achieved to 64.97 MPa. In the case, proper interdiffusion and dissolution between A356 matrix/filler metal interfaces occurred rather than defect of melting corrosion at 585 ℃, and reaction layer was obtained along the part of filler metal/SiCp interfaces because of chemical reaction with active Mg element effect. While with Ni-P alloy coating, compact reaction layers rich in Al and Ni elements tended to be formed along the A356 matrix/Ni-P alloy coating/filler metal foil interfaces at 570 ℃ and soaking time of 30 min. Consequently, the joint adhesion was improved significantly and a higher shear strength of 79.96 MPa was obtained by using (Al-33.3Cu-6.0Mg)-4Ni filler metal foil.
Key words:  SiCp/Al composites    electroless plated Ni-P alloy coating    vacuum brazing    microstructure
发布日期:  2018-05-08
ZTFLH:  TG454  
基金资助: *国家自然科学基金(51245008);河南省教育厅科学技术研究重点项目(15A430026)
通讯作者:  高增,男,1983年生,讲师,主要研究方向为复合材料焊接及数值模拟E-mail:mrgaozeng@163.com   
作者简介:  王鹏:男,1987年生,博士研究生,主要研究方向为复合材料先进连接技术E-mail:wangpeng88626@163.com
引用本文:    
王鹏,高增,程东锋,牛济泰,. 高体积比SiCp/A356复合材料真空扩散钎焊接头组织与性能研究*[J]. 材料导报编辑部, 2017, 31(22): 75-78.
WANG Peng, GAO Zeng, CHENG Dongfeng, NIU Jitai,. Investigation on the Microstructures and Properties of Vacuum Diffusion Brazed Joints for SiCp/A356 Composites with High SiC Content. Materials Reports, 2017, 31(22): 75-78.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.022.015  或          https://www.mater-rep.com/CN/Y2017/V31/I22/75
1 Yu Z H, Zhang J Y, Zhou X L, et al. Research and development on thermal conductivity of SiC/Al composites applied to electronic packaging[J]. Met Funct Mater, 2009,16(1):59.
2 Guo M, Liu J, Li Y. Microstructure and properties of SiC p/Al electronic packaging shell produced by liquid-solid separation[J]. Trans Nonferr Met Soc China, 2014,24(4):1039.
3 Li L Q, Zuo Z C, Tao W, et al. Welded joints fracture behavior of laser in-situ welding of high volume fraction SiCp/2024Al MMC[J]. Trans China Weld Inst, 2012(4):61(in Chinese).
李俐群, 左智成, 陶汪, 等. 高比分SiCp/2024铝基复合材料激光原位焊接头断裂行为[J]. 焊接学报, 2012(4):61.
4 Lei Y C, Hu W X, Xue H L, et al. Influence of Ti-Al-Si-Mg on microstructure and mechanical properties of plasma arc in-suit welded joint of SiCp/Al MMCS[J]. Trans China Weld Inst, 2011,32(5):9(in Chinese).
雷玉成, 胡文祥, 薛厚禄, 等. Ti-Al-Si-Mg对SiCp/Al基复合材料等离子弧原位焊接焊缝组织和性能的影响[J]. 焊接学报, 2011,32(5):9.
5 Wang B, Jiang S S, Zhang K F. Pulse current auxiliary TLP diffusion bonding of SiCp/2024Al composite sheet using mixed Al-Cu-Ti powder interlayer[J]. Int J Adv Manuf Technol, 2013,65(9-12):1779.
6 Wang P, Xu D X, Cheng D F, et al. Active brazing filler metal on SiC particle reinforced aluminium matrix composites[J]. Sci Technol Weld Join, 2015,20(5):361.
7 Wang D, Wang Q Z, Xiao B L, et al. Achieving friction stir welded SiCp/Al-Cu-Mg composite joint of nearly equal strength to base material at high welding speed[J]. Mater Sci Eng A, 2014,589(2):271.
8 Wang P, Gao Z, Niu J. Micro-nano filler metal foil on vacuum brazing of SiCp/Al composites[J]. Appl Phys A, 2016,122(6):592.
9 Su Y, Chen Y Q, Ding H L, et al. Microstructure and precipitation process of rapidly solidified Al-Cu-Mg-Fe-Ni alloy[J]. Chin J Rare Met, 2002,26(4):253(in Chinese).
苏勇, 陈翌庆, 丁厚福, 等. 快速凝固Al-Cu-Mg-Fe-Ni合金的显微组织和析出过程[J]. 稀有金属, 2002,26(4):253.
10 Aburada T, Fitz-Gerald J M, Scully J R. Pitting and dealloying of solute-Rich Al-Cu-Mg-based amorphous alloys: Effect of alloying with minor concentrations of nickel[J]. J Electrochem Soc, 2011,158(9):C253.
11 Aburada T, ünlü N, Fitz-Gerald J M, et al. Effect of Ni as a minority alloying element on the corrosion behavior in Al-Cu-Mg-(Ni) metallic glasses[J]. Scr Mater, 2008,58(8):623.
12 Fang M, Hu L, Yang L, et al. Electroless coating and growth kinetics of Ni-P alloy film on SiCp/Al composite with high SiC volume fraction[J]. Trans Nonferr Met Soc China, 2016,26(3):799.
13 Yadav T P, Mukhopadhyay N K, Tiwari R S, et al. Formation of Al3Ni2-type nanocrystalline 3 phases in the Al-Cu-Ni system by mechanical alloying[J]. Phil Mag Lett, 2007,80(87):781.
14 车荫昌,梁英教. 无机物热力学数据手册[M]. 沈阳:东北大学出版社, 1993.
15 Choi W K, Lee H M. Effect of soldering and aging time on interfacial microstructure and growth of intermetallic compounds between Sn-3.5Ag solder alloy and Cu substrate[J]. J Electron Mater, 2000,29(10):1207.
16 Yi Y C, Zhou G, Ju W P, et al. Effect of alloying element on the wettability and corrosion resistance of low-tin solders[J]. Trans China Weld Inst, 1990(1):50(in Chinese).
易蕴琛, 周钢, 鞠为平, 等. 合金元素对低锡钎料润湿性和抗腐蚀性能的影响[J]. 焊接学报, 1990(1):50.
[1] 卞宏友, 柳金生, 刘伟军, 张广泰, 姚佳彬, 邢飞. 激光沉积修复GH738/K417G合金时效热处理组织性能分析[J]. 材料导报, 2025, 39(3): 23110265-6.
[2] 马东帅, 闫二虎, 白金旺, 王豪, 张硕, 王艺豪, 李唐卫, 郭智洁, 周子锐, 邹勇进, 孙立贤. V-Ti-Fe三元合金显微组织、氢传输行为及耐蚀性能研究[J]. 材料导报, 2024, 38(8): 22110007-7.
[3] 程立宏, 周裕琦, 王建峰, 李柱, 穆战, 占小红. 焊丝成分对国产Invar合金GTAW接头组织差异性的影响[J]. 材料导报, 2024, 38(23): 23080151-6.
[4] 毕广利, 冉吉上, 满宏生, 姜静, 孟帅举, 毕广阔, 王海东, 李元东. 挤压Mg-Y-Ni-Co合金的显微组织、加工性能及塑性变形行为[J]. 材料导报, 2024, 38(21): 23060144-8.
[5] 段逸飞, 王建利, 袁满, 王礼营, 杨忠, 李菲, 田皓. 镁锂合金中LPSO相的研究进展[J]. 材料导报, 2024, 38(20): 23020055-10.
[6] 张健, 朱智浩, 张爽, 董闯. 高Al含量的亚稳β型Ti-Al-Mo-Nb-V系列钛合金的组织与力学性能[J]. 材料导报, 2024, 38(2): 22040297-6.
[7] 吴长军, 朱付成, 王权, 彭浩平, 刘亚, 苏旭平. 600~1 000 ℃退火处理对FCC型CoxFeMnNi3-x合金组织演变及耐蚀性的影响[J]. 材料导报, 2024, 38(18): 23080153-7.
[8] 王婷, 胡斌, 王文琴, 王非凡. 微弧火花沉积Zr基非晶涂层的组织及性能[J]. 材料导报, 2024, 38(16): 22090308-6.
[9] 肖华强, 尹星贵, 冯进宇, 肖易, 龚玉婷. TC4钛合金表面激光熔覆Ti-Mo-Al-B复合涂层的组织及摩擦磨损性能[J]. 材料导报, 2024, 38(12): 22080075-6.
[10] 俞伟元, 董鹏飞, 吴保磊. 超音速火焰喷涂氧燃比对铁基非晶涂层性能的影响[J]. 材料导报, 2024, 38(12): 22120200-6.
[11] 王虎, 武少杰, 董翼纶, 程方杰. 热输入对埋弧增材厚壁构件微观组织与冲击韧性的影响[J]. 材料导报, 2024, 38(11): 22120217-5.
[12] 胡海波, 朱丽慧, 涂有旺, 段元满, 吴晓春, 顾炳福. 深冷处理工艺对M2高速钢显微组织与性能的影响[J]. 材料导报, 2023, 37(9): 21110028-6.
[13] 聂浩, 徐洋, 柯黎明, 邢丽. 转速对厚板铝/镁异种材料搅拌摩擦焊摩擦产热及界面组织的影响[J]. 材料导报, 2023, 37(8): 21090144-6.
[14] 黄仁君, 闫二虎, 陈运灿, 葛晓宇, 程健, 王豪, 刘威, 褚海亮, 邹勇进, 徐芬, 孙立贤. Nb-Ti-Fe合金的组织和耐腐蚀性能及置氢前后的显微硬度研究[J]. 材料导报, 2023, 37(7): 21070095-7.
[15] 于以标, 陈乐平, 徐勇, 袁源平, 方森鹏. 2060-T8E30铝锂合金的高温拉伸变形行为及显微组织研究[J]. 材料导报, 2023, 37(6): 21090209-6.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed