Research Progress on Composition Design of Cu-based Friction Materials for High-speed Trains
XIAO Jinkun1,*, LI Tiantian1, CHEN Juan2, ZHANG Chao1
1 School of Mechanical Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China 2 Testing Center, Yangzhou University, Yangzhou 225009, Jiangsu, China
Abstract: Cu-based friction materials are widely used in the braking system of high-speed trains owing to their excellent properties of thermal conductivity, oxidation resistance, high-temperature adhesive resistance, stable friction coefficient and wear resistance. Cu-based friction material is a metal and nonmetal made composite, which is prepared by powder metallurgy process. The friction and wear properties of the material can be improved by adjusting the composition in a wide range. However, with the development of high-speed trains towards high-speed and high-energy load, friction materials have to suffer the combination of strong surface oxidation, high thermal load and high load impact. Problems, such as matrix softening at high temperature, graphite lubricating phase ablating, friction decay and edge loss, occur during the service process of Cu-based friction materials. In recent years, researchers focus on the composition and preparation process. The strength of matrix is improved by solid solution and dispersion strengthening. Multiple compound lubrication components are adopted to broaden the range of temperature adaptation. Using metal or alloy friction components instead of ceramic or copper-plated ceramic particles can improve interface bonding and shear strength. This paper systematically summarizes the research progress on the composition of Cu-based friction materials. The variation and development trends of components and the contents of each component are analyzed. The influences of matrix component, lubrication component, friction component and interfacial structure on tribological properties of materials are reviewed. Finally, the relationships between composition, friction layer and tribological performance are proposed to provide a basis for the composition design of Cu-based friction materials.
1 Prabhu T R, Varma V K, Vedantam S. Wear, 2014, 309(1-2), 247. 2 Manna R, Magnier V, Brunel J F, et al. Wear, 2017, 386-387, 1. 3 Kasem H, Brunel J F, Dufrénoy P, et al. Wear, 2011, 270, 355. 4 Li H P, Li F. High-speed train braking system, Southwest Jiaotong University Press, China, 2019, pp. 637 (in Chinese). 李和平, 李芾. 高速列车制动系统, 西南交通大学出版社, 2019, pp. 637. 5 Xiao J K, Xiao S X, Chen J, et al. Tribology International, 2020, 150, 106357. 6 Chen F, Li Z, Zou L F, et al. Tribology International, 2021, 153, 106561. 7 Peng T, Yan Q Z, Zhang X L, et al. Friction, 2021, 9, 1543. 8 Zhang P, Zhang L, Wei D B, et al. Wear, 2020, 444-445, 203182. 9 Zhang P, Zhang L, Wei D B, et al. Composites Part B, 2020, 185, 107779. 10 Zhang P, Zhang L, Wei D B, et al. Journal of Tribology, 2020, 142(8), 1. 11 Zhang P, Zhang L, Wu P F, et al. Wear, 2020, 458-459, 203408. 12 Zhao S Q, Yan Q Z, Peng T, et al. Wear, 2020, 448-449, 203237. 13 Zhou H B, Yao P P, Xiao Y L, et al. Tribology International, 2019, 132, 199. 14 Zhang P, Zhang L, Fu K X, et al. Wear, 2019, 428-429, 10. 15 Zhang P, Zhang L, Fu K X, et al. Tribology International, 2019, 135, 444. 16 Zhang P, Zhang L, Fu K X, et al. Journal of Tribology, 2019, 141(8), 1. 17 Zhang P, Zhang L, Wei D B, et al. Wear, 2019, 432-433, 202927. 18 Xiao Y L, Zhang Z L, Yao P P, et al. Tribology International, 2018, 119, 585. 19 Peng T, Yan Q Z, Zhang X L. Tribology Letters, 2018, 66(2), 63. 20 Peng T, Yan Q Z, Li G, et al. Tribology Letters, 2018, 66(1), 18. 21 Zhang P, Zhang L, Fu K X, et al. Wear, 2018, 414-415, 317. 22 Fan J L, Zhang C, Wu S, et al. Materials Science and Technology, 2018, 34(7), 869. 23 Wang Q, Yao P P, Zhou H B, et al. Tribology, 2017, 37(3), 364 (in Chinese). 王奇, 姚萍屏, 周海滨, 等. 摩擦学学报, 2017, 37(3), 364. 24 Fan Z Y, Ye Y P, Wang Y, et al. Powder Metallurgy Industry, 2016, 26(3), 28 (in Chinese). 樊子源, 叶亚平, 王晔, 等. 粉末冶金工业, 2016, 26(3), 28. 25 Zhao X, Guo L C, Zhang L, et al. Metallurgy and Materials, 2016, 23(12), 1444. 26 Wang X Y, Ru H Q. Powder Metallurgy Industry, 2015, 25(6), 48 (in Chinese). 王晓阳, 茹红强. 粉末冶金工业, 2015, 25(6), 48. 27 Su L L, Gao F, Han X M, et al. Tribology Letters, 2015, 60(2), 30. 28 Su L L, Gao F, Han X M, et al. Tribology International, 2015, 90, 420. 29 Gyimah G K, Huang P, Chen D. Journal of Tribology, 2014, 136(4), 041601. 30 Zhou H B, Yao P P, Xiao Y L, et al. The Chinese Journal of Nonferrous Metals, 2014, 24(9), 2272 (in Chinese). 周海滨, 姚萍屏, 肖叶龙, 等. 中国有色金属学报, 2014, 24(9), 2272. 31 Wang Y, Yan Q Z, Zhang X L, et al. Journal of University of Science and Technology Beijing, 2014, 36(4), 467 (in Chinese). 王晔, 燕青芝, 张肖路, 等. 北京科技大学学报, 2014, 36(4), 467. 32 Zhao X, Hao J J, Peng K, et al. Materials Science and Engineering of Powder Metallurgy, 2014, 19(6), 935 (in Chinese). 赵翔, 郝俊杰, 彭坤, 等. 粉末冶金材料科学与工程, 2014, 19(6), 935. 33 Sun Z G, Gao F, Wang D Q. Lubrication Engineering, 2014, 39(12), 29 (in Chinese). 孙忠刚, 高飞, 王德庆. 润滑与密封, 2014, 39(12), 29. 34 Zhang X W, Meng F A, Liu J L, et al. Powder Metallurgy Technology, 2014, 32(1), 36 (in Chinese). 张兴旺, 孟凡爱, 刘佳玲, 等. 粉末冶金技术, 2014, 32(1), 36. 35 Wang Y, Yan Q Z, Zhang F F, et al. International Journal of Minerals, Metallurgy and Materials, 2013, 20(12), 1208. 36 Xiong X, Chen J, Yao P P, et al. Wear, 2007, 262(9-10), 1182. 37 Wei D B, Zhang L, Zhang P, et al. Powder Metallurgy Technology, 2022, 40(1), 4 (in Chinese). 魏东彬, 章林, 张鹏, 等. 粉末冶金技术, 2022, 40(1), 4. 38 Liu J X, Pan S L, Wu S, et al. Special Casting and Nonferrous Alloys, 2019, 36(6), 661 (in Chinese). 刘建秀, 潘胜利, 吴深, 等. 特种铸造及有色合金, 2019, 36(6), 661. 39 Liu J X, Jia D J, Fan J L, et al. Journal of Materials and Metallurgy, 2018, 17(1), 69 (in Chinese). 刘建秀, 贾徳晋, 樊江磊, 等. 材料与冶金学报, 2018, 17(1), 69. 40 Xiao Y L, Yao P P, Fan K Y, et al. Friction, 2018, 6(2), 219. 41 Gao F, Lang J T, Fu R, et al. Lubrication Engineering, 2008, 33(1), 18 (in Chinese). 高飞, 朗剑通, 符蓉, 等. 润滑与密封, 2008, 33(1), 18. 42 Fu R, Fang S L, Gao F, et al. Lubrication Engineering, 2013, 38(10), 15 (in Chinese). 符蓉, 房顺利, 高飞, 等. 润滑与密封, 2013, 38(10), 15. 43 Chen B M, Zhang Z Y, Liu X B, et al. Journal of Materials Science & Engineering, 2010, 28(1), 69 (in Chinese). 陈百明, 张振宇, 刘晓斌, 等. 材料科学与工程学报, 2010, 28(1), 69. 44 Yao G X, Niu H W. Hot Working Technology, 2016, 45(8), 121 (in Chinese). 姚冠新, 牛华伟. 热加工工艺, 2016, 45(8), 121. 45 Wen G F, He R, Wang X F, et al. Powder Metallurgy Industry, 2020, 30(5), 45 (in Chinese). 文国富, 何锐, 王秀飞, 等. 粉末冶金工业, 2020, 30(5), 45. 46 Qin W, Wang T G, Hua J J. Powder Metallurgy Industry, 2017, 27(2), 42 (in Chinese). 覃群, 王天国, 华建杰. 粉末冶金工业, 2017, 27(2), 42. 47 Wang T G, Qin W, Liang Q C. Lubrication Engineering, 2016, 41(4), 49 (in Chinese). 王天国, 覃群, 梁启超. 润滑与密封, 2016, 41(4), 49. 48 Wang Y, Yan Q Z, Zhang X L, et al. Chinese Journal of Materials Research, 2013, 27(1), 37 (in Chinese). 王晔, 燕青芝, 张肖路, 等. 材料研究学报, 2013, 27(1), 37. 49 Du J H, Liu G M, Xie F K, et al. The Chinese Journal of Nonferrous Metals, 2008, 18(8), 1453 (in Chinese). 杜建华, 刘贵民, 谢凤宽, 等. 中国有色金属学报, 2008, 18(8), 1453. 50 Du J H, Liu Y W, Li Y Y. Optics and Precision Engineering, 2013, 21(10), 2581 (in Chinese). 杜建华, 刘彦伟, 李园园. 光学 精密工程, 2013, 21(10), 2581. 51 Xiao J K, Wu Y Q, Zhang W, et al. Friction, 2020, 8(3), 517. 52 Zhang Y Z, Zhang G D. Tribology Letters, 2004, 17(1), 91. 53 Chen J, Yao P P, Sheng H C, et al. Hot Working Techonlogy, 2006, 35(14), 13 (in Chinese). 陈军, 姚萍屏, 盛洪超, 等. 热加工工艺, 2006, 35(14), 13. 54 Kolluri D, Ghosh A K, Bijwe J. Wear, 2009, 266(1), 266. 55 Dhanasekaran S, Gnanamoorthy R. Materials & Design, 2007, 28(4), 1135. 56 Xiao J K, Zhang W, Zhang C. Wear, 2018, 412-413, 109. 57 Peng T, Yan Q Z, Zhang X L, et al. International Journal of Minerals, Metallurgy and Materials, 2017, 24(11), 1278. 58 Peng T, Yan Q Z, Zhang Y, et al. International Journal of Minerals, Metallurgy and Materials, 2017, 24(1), 115. 59 Xiao Y L, Yao P P, Gong T M, et al. The Chinese Journal of Nonferrous Metals, 2012, 22(9), 2539 (in Chinese). 肖叶龙, 姚萍屏, 贡太敏, 等. 中国有色金属学报, 2012, 22(9), 2539. 60 Xiao J K, Zhang W, Liu L M, et al. Wear, 2017, 384-385, 61. 61 Chen J J, Chen J, Wang S, et al. Tribology International, 2020, 148, 106333. 62 Zhong Z G, Deng H J, Li M, et al. Journal of Materials Engineering, 2002, 0(8), 17 (in Chinese). 钟志刚, 邓海金, 李明, 等. 材料工程, 2002, 0(8), 17. 63 Chen J, Xiong X, Yao P P, et al. Powder Metallurgy Industry, 2006, 16(4), 16 (in Chinese). 陈洁, 熊翔, 姚萍屏, 等. 粉末冶金工业, 2006, 16(4), 16. 64 Zhou H B, Yao P P, Xiao Y L, et al. Wear, 2022, 496-497, 204275. 65 Liu J X, Zhang C, Fan J L, et al. Powder Metallurgy Industry, 2019, 29(1), 32 (in Chinese). 刘建秀, 张驰, 樊江磊, 等. 粉末冶金工业, 2019, 29(1), 32. 66 Cui G J, Ren J, Lu Z X. Tribology Letters, 2017, 65(3), 108. 67 Zhou H B, Yao P P, Gong T M, et al. Tribology International, 2019, 138, 380. 68 Li Z Z, Liu R T, Lin X Y, et al. Materials Science and Engineering of Powder Metallurgy, 2021, 26(2), 108 (in Chinese). 李政舟, 刘如铁, 林雪杨, 等. 粉末冶金材料科学与工程, 2021, 26(2), 108. 69 Zhou H B, Yao P P, Xiao Y L, et al. The Chinese Journal of Nonferrous Metals, 2016, 26(2), 328 (in Chinese). 周海滨, 姚萍屏, 肖叶龙, 等. 中国有色金属学报, 2016, 26(2), 328. 70 Zhao J H, Li P, Tang Q, et al. Journal of Materials Engineering & Performance, 2017, 26(2), 792. 71 Zhang X, Guo D, Liu J F, et al. Tribology, 2022, 42(2), 396 (in Chinese). 张鑫, 郭丹, 刘军锋, 等. 摩擦学学报, 2022, 42(2), 396. 72 Gong T M, Yao P P, Xiong X, et al. Journal of Alloys and Compounds, 2019, 786, 975. 73 Zou H H, Ran X, Zhu W W, et al. Materials, 2018, 11(12), 2414. 74 Wan Y Z, Wang Y L, Cheng G X, et al. Powder Metallurgy, 1998, 41(1), 59. 75 Zhang R, He X B, Chen Z, et al. Vacuum, 2017, 141, 265. 76 Han S C, Li X Q, Xu Z Y. Journal of Hunan University, 1998, 25(5), 30 (in Chinese). 韩绍昌, 李学谦, 徐仲榆. 湖南大学学报, 1998, 25(5), 30. 77 Guo M, Fan Z X, Fu W, et al. Vacuum, 2021, 194, 110591.