Please wait a minute...
材料导报  2023, Vol. 37 Issue (23): 22030270-11    https://doi.org/10.11896/cldb.22030270
  金属与金属基复合材料 |
高速列车铜基摩擦材料的成分设计研究进展
肖金坤1,*, 李天天1, 陈娟2, 张超1
1 扬州大学机械工程学院,江苏 扬州 225127
2 扬州大学测试中心,江苏 扬州 225009
Research Progress on Composition Design of Cu-based Friction Materials for High-speed Trains
XIAO Jinkun1,*, LI Tiantian1, CHEN Juan2, ZHANG Chao1
1 School of Mechanical Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
2 Testing Center, Yangzhou University, Yangzhou 225009, Jiangsu, China
下载:  全 文 ( PDF ) ( 14625KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 铜基摩擦材料因具有优异的导热、抗氧化、抗高温粘着、摩擦因数稳定和耐磨损等综合性能,广泛应用于高速列车制动系统中,是高速列车安全运行的保障。铜基摩擦材料是采用粉末冶金工艺制备的由金属与非金属组成的多元复合材料,可以通过对材料成分大范围内的调节,实现材料摩擦磨损性能的调控。然而,随着高速列车向高速高能载方向发展,摩擦材料需要承受强表面氧化、高热负荷和高载荷冲击的共同作用,铜基摩擦材料在服役过程中出现基体高温软化、石墨润滑相烧蚀、摩擦衰退、以及掉边角等问题。近年来研究者从材料成分和工艺出发,通过对基体组元的固溶、弥散强化提高基体强度,采取润滑组元的多元复合拓宽温度适应范围,选择金属或合金摩擦组元替代陶瓷摩擦组元以及陶瓷颗粒表面镀铜等方法改善界面结合提高剪切强度。本文系统总结了铜基摩擦材料的成分设计研究进展,分析了各组元成分、含量的变化和发展趋势,综述了基体组元、润滑组元、摩擦组元以及界面结构的调控对材料摩擦磨损性能的影响,最后提出构建材料成分-摩擦层-摩擦磨损性能之间关系,为铜基摩擦材料成分设计提供依据。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
肖金坤
李天天
陈娟
张超
关键词:  铜基摩擦材料  成分设计  摩擦磨损性能  高速列车    
Abstract: Cu-based friction materials are widely used in the braking system of high-speed trains owing to their excellent properties of thermal conductivity, oxidation resistance, high-temperature adhesive resistance, stable friction coefficient and wear resistance. Cu-based friction material is a metal and nonmetal made composite, which is prepared by powder metallurgy process. The friction and wear properties of the material can be improved by adjusting the composition in a wide range. However, with the development of high-speed trains towards high-speed and high-energy load, friction materials have to suffer the combination of strong surface oxidation, high thermal load and high load impact. Problems, such as matrix softening at high temperature, graphite lubricating phase ablating, friction decay and edge loss, occur during the service process of Cu-based friction materials. In recent years, researchers focus on the composition and preparation process. The strength of matrix is improved by solid solution and dispersion strengthening. Multiple compound lubrication components are adopted to broaden the range of temperature adaptation. Using metal or alloy friction components instead of ceramic or copper-plated ceramic particles can improve interface bonding and shear strength. This paper systematically summarizes the research progress on the composition of Cu-based friction materials. The variation and development trends of components and the contents of each component are analyzed. The influences of matrix component, lubrication component, friction component and interfacial structure on tribological properties of materials are reviewed. Finally, the relationships between composition, friction layer and tribological performance are proposed to provide a basis for the composition design of Cu-based friction materials.
Key words:  Cu-based friction materials    composition design    tribological property    high-speed train
出版日期:  2023-12-10      发布日期:  2023-12-08
ZTFLH:  TB331  
基金资助: 国家自然科学基金(52374372;51804272);扬州大学‘高端人才支持计划';扬州大学‘青蓝工程'
通讯作者:  * 肖金坤,扬州大学机械工程学院副教授、硕士研究生导师。2010年中南大学材料化学专业本科毕业,2015年中南大学粉末冶金研究院材料学专业博士毕业。目前主要从事金属基摩擦材料、新型粉末冶金材料、耐磨涂层材料、滑动电接触材料和摩擦磨损设备的研究工作。jkxiao@yzu.edu.cn   
引用本文:    
肖金坤, 李天天, 陈娟, 张超. 高速列车铜基摩擦材料的成分设计研究进展[J]. 材料导报, 2023, 37(23): 22030270-11.
XIAO Jinkun, LI Tiantian, CHEN Juan, ZHANG Chao. Research Progress on Composition Design of Cu-based Friction Materials for High-speed Trains. Materials Reports, 2023, 37(23): 22030270-11.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22030270  或          http://www.mater-rep.com/CN/Y2023/V37/I23/22030270
1 Prabhu T R, Varma V K, Vedantam S. Wear, 2014, 309(1-2), 247.
2 Manna R, Magnier V, Brunel J F, et al. Wear, 2017, 386-387, 1.
3 Kasem H, Brunel J F, Dufrénoy P, et al. Wear, 2011, 270, 355.
4 Li H P, Li F. High-speed train braking system, Southwest Jiaotong University Press, China, 2019, pp. 637 (in Chinese).
李和平, 李芾. 高速列车制动系统, 西南交通大学出版社, 2019, pp. 637.
5 Xiao J K, Xiao S X, Chen J, et al. Tribology International, 2020, 150, 106357.
6 Chen F, Li Z, Zou L F, et al. Tribology International, 2021, 153, 106561.
7 Peng T, Yan Q Z, Zhang X L, et al. Friction, 2021, 9, 1543.
8 Zhang P, Zhang L, Wei D B, et al. Wear, 2020, 444-445, 203182.
9 Zhang P, Zhang L, Wei D B, et al. Composites Part B, 2020, 185, 107779.
10 Zhang P, Zhang L, Wei D B, et al. Journal of Tribology, 2020, 142(8), 1.
11 Zhang P, Zhang L, Wu P F, et al. Wear, 2020, 458-459, 203408.
12 Zhao S Q, Yan Q Z, Peng T, et al. Wear, 2020, 448-449, 203237.
13 Zhou H B, Yao P P, Xiao Y L, et al. Tribology International, 2019, 132, 199.
14 Zhang P, Zhang L, Fu K X, et al. Wear, 2019, 428-429, 10.
15 Zhang P, Zhang L, Fu K X, et al. Tribology International, 2019, 135, 444.
16 Zhang P, Zhang L, Fu K X, et al. Journal of Tribology, 2019, 141(8), 1.
17 Zhang P, Zhang L, Wei D B, et al. Wear, 2019, 432-433, 202927.
18 Xiao Y L, Zhang Z L, Yao P P, et al. Tribology International, 2018, 119, 585.
19 Peng T, Yan Q Z, Zhang X L. Tribology Letters, 2018, 66(2), 63.
20 Peng T, Yan Q Z, Li G, et al. Tribology Letters, 2018, 66(1), 18.
21 Zhang P, Zhang L, Fu K X, et al. Wear, 2018, 414-415, 317.
22 Fan J L, Zhang C, Wu S, et al. Materials Science and Technology, 2018, 34(7), 869.
23 Wang Q, Yao P P, Zhou H B, et al. Tribology, 2017, 37(3), 364 (in Chinese).
王奇, 姚萍屏, 周海滨, 等. 摩擦学学报, 2017, 37(3), 364.
24 Fan Z Y, Ye Y P, Wang Y, et al. Powder Metallurgy Industry, 2016, 26(3), 28 (in Chinese).
樊子源, 叶亚平, 王晔, 等. 粉末冶金工业, 2016, 26(3), 28.
25 Zhao X, Guo L C, Zhang L, et al. Metallurgy and Materials, 2016, 23(12), 1444.
26 Wang X Y, Ru H Q. Powder Metallurgy Industry, 2015, 25(6), 48 (in Chinese).
王晓阳, 茹红强. 粉末冶金工业, 2015, 25(6), 48.
27 Su L L, Gao F, Han X M, et al. Tribology Letters, 2015, 60(2), 30.
28 Su L L, Gao F, Han X M, et al. Tribology International, 2015, 90, 420.
29 Gyimah G K, Huang P, Chen D. Journal of Tribology, 2014, 136(4), 041601.
30 Zhou H B, Yao P P, Xiao Y L, et al. The Chinese Journal of Nonferrous Metals, 2014, 24(9), 2272 (in Chinese).
周海滨, 姚萍屏, 肖叶龙, 等. 中国有色金属学报, 2014, 24(9), 2272.
31 Wang Y, Yan Q Z, Zhang X L, et al. Journal of University of Science and Technology Beijing, 2014, 36(4), 467 (in Chinese).
王晔, 燕青芝, 张肖路, 等. 北京科技大学学报, 2014, 36(4), 467.
32 Zhao X, Hao J J, Peng K, et al. Materials Science and Engineering of Powder Metallurgy, 2014, 19(6), 935 (in Chinese).
赵翔, 郝俊杰, 彭坤, 等. 粉末冶金材料科学与工程, 2014, 19(6), 935.
33 Sun Z G, Gao F, Wang D Q. Lubrication Engineering, 2014, 39(12), 29 (in Chinese).
孙忠刚, 高飞, 王德庆. 润滑与密封, 2014, 39(12), 29.
34 Zhang X W, Meng F A, Liu J L, et al. Powder Metallurgy Technology, 2014, 32(1), 36 (in Chinese).
张兴旺, 孟凡爱, 刘佳玲, 等. 粉末冶金技术, 2014, 32(1), 36.
35 Wang Y, Yan Q Z, Zhang F F, et al. International Journal of Minerals, Metallurgy and Materials, 2013, 20(12), 1208.
36 Xiong X, Chen J, Yao P P, et al. Wear, 2007, 262(9-10), 1182.
37 Wei D B, Zhang L, Zhang P, et al. Powder Metallurgy Technology, 2022, 40(1), 4 (in Chinese).
魏东彬, 章林, 张鹏, 等. 粉末冶金技术, 2022, 40(1), 4.
38 Liu J X, Pan S L, Wu S, et al. Special Casting and Nonferrous Alloys, 2019, 36(6), 661 (in Chinese).
刘建秀, 潘胜利, 吴深, 等. 特种铸造及有色合金, 2019, 36(6), 661.
39 Liu J X, Jia D J, Fan J L, et al. Journal of Materials and Metallurgy, 2018, 17(1), 69 (in Chinese).
刘建秀, 贾徳晋, 樊江磊, 等. 材料与冶金学报, 2018, 17(1), 69.
40 Xiao Y L, Yao P P, Fan K Y, et al. Friction, 2018, 6(2), 219.
41 Gao F, Lang J T, Fu R, et al. Lubrication Engineering, 2008, 33(1), 18 (in Chinese).
高飞, 朗剑通, 符蓉, 等. 润滑与密封, 2008, 33(1), 18.
42 Fu R, Fang S L, Gao F, et al. Lubrication Engineering, 2013, 38(10), 15 (in Chinese).
符蓉, 房顺利, 高飞, 等. 润滑与密封, 2013, 38(10), 15.
43 Chen B M, Zhang Z Y, Liu X B, et al. Journal of Materials Science & Engineering, 2010, 28(1), 69 (in Chinese).
陈百明, 张振宇, 刘晓斌, 等. 材料科学与工程学报, 2010, 28(1), 69.
44 Yao G X, Niu H W. Hot Working Technology, 2016, 45(8), 121 (in Chinese).
姚冠新, 牛华伟. 热加工工艺, 2016, 45(8), 121.
45 Wen G F, He R, Wang X F, et al. Powder Metallurgy Industry, 2020, 30(5), 45 (in Chinese).
文国富, 何锐, 王秀飞, 等. 粉末冶金工业, 2020, 30(5), 45.
46 Qin W, Wang T G, Hua J J. Powder Metallurgy Industry, 2017, 27(2), 42 (in Chinese).
覃群, 王天国, 华建杰. 粉末冶金工业, 2017, 27(2), 42.
47 Wang T G, Qin W, Liang Q C. Lubrication Engineering, 2016, 41(4), 49 (in Chinese).
王天国, 覃群, 梁启超. 润滑与密封, 2016, 41(4), 49.
48 Wang Y, Yan Q Z, Zhang X L, et al. Chinese Journal of Materials Research, 2013, 27(1), 37 (in Chinese).
王晔, 燕青芝, 张肖路, 等. 材料研究学报, 2013, 27(1), 37.
49 Du J H, Liu G M, Xie F K, et al. The Chinese Journal of Nonferrous Metals, 2008, 18(8), 1453 (in Chinese).
杜建华, 刘贵民, 谢凤宽, 等. 中国有色金属学报, 2008, 18(8), 1453.
50 Du J H, Liu Y W, Li Y Y. Optics and Precision Engineering, 2013, 21(10), 2581 (in Chinese).
杜建华, 刘彦伟, 李园园. 光学 精密工程, 2013, 21(10), 2581.
51 Xiao J K, Wu Y Q, Zhang W, et al. Friction, 2020, 8(3), 517.
52 Zhang Y Z, Zhang G D. Tribology Letters, 2004, 17(1), 91.
53 Chen J, Yao P P, Sheng H C, et al. Hot Working Techonlogy, 2006, 35(14), 13 (in Chinese).
陈军, 姚萍屏, 盛洪超, 等. 热加工工艺, 2006, 35(14), 13.
54 Kolluri D, Ghosh A K, Bijwe J. Wear, 2009, 266(1), 266.
55 Dhanasekaran S, Gnanamoorthy R. Materials & Design, 2007, 28(4), 1135.
56 Xiao J K, Zhang W, Zhang C. Wear, 2018, 412-413, 109.
57 Peng T, Yan Q Z, Zhang X L, et al. International Journal of Minerals, Metallurgy and Materials, 2017, 24(11), 1278.
58 Peng T, Yan Q Z, Zhang Y, et al. International Journal of Minerals, Metallurgy and Materials, 2017, 24(1), 115.
59 Xiao Y L, Yao P P, Gong T M, et al. The Chinese Journal of Nonferrous Metals, 2012, 22(9), 2539 (in Chinese).
肖叶龙, 姚萍屏, 贡太敏, 等. 中国有色金属学报, 2012, 22(9), 2539.
60 Xiao J K, Zhang W, Liu L M, et al. Wear, 2017, 384-385, 61.
61 Chen J J, Chen J, Wang S, et al. Tribology International, 2020, 148, 106333.
62 Zhong Z G, Deng H J, Li M, et al. Journal of Materials Engineering, 2002, 0(8), 17 (in Chinese).
钟志刚, 邓海金, 李明, 等. 材料工程, 2002, 0(8), 17.
63 Chen J, Xiong X, Yao P P, et al. Powder Metallurgy Industry, 2006, 16(4), 16 (in Chinese).
陈洁, 熊翔, 姚萍屏, 等. 粉末冶金工业, 2006, 16(4), 16.
64 Zhou H B, Yao P P, Xiao Y L, et al. Wear, 2022, 496-497, 204275.
65 Liu J X, Zhang C, Fan J L, et al. Powder Metallurgy Industry, 2019, 29(1), 32 (in Chinese).
刘建秀, 张驰, 樊江磊, 等. 粉末冶金工业, 2019, 29(1), 32.
66 Cui G J, Ren J, Lu Z X. Tribology Letters, 2017, 65(3), 108.
67 Zhou H B, Yao P P, Gong T M, et al. Tribology International, 2019, 138, 380.
68 Li Z Z, Liu R T, Lin X Y, et al. Materials Science and Engineering of Powder Metallurgy, 2021, 26(2), 108 (in Chinese).
李政舟, 刘如铁, 林雪杨, 等. 粉末冶金材料科学与工程, 2021, 26(2), 108.
69 Zhou H B, Yao P P, Xiao Y L, et al. The Chinese Journal of Nonferrous Metals, 2016, 26(2), 328 (in Chinese).
周海滨, 姚萍屏, 肖叶龙, 等. 中国有色金属学报, 2016, 26(2), 328.
70 Zhao J H, Li P, Tang Q, et al. Journal of Materials Engineering & Performance, 2017, 26(2), 792.
71 Zhang X, Guo D, Liu J F, et al. Tribology, 2022, 42(2), 396 (in Chinese).
张鑫, 郭丹, 刘军锋, 等. 摩擦学学报, 2022, 42(2), 396.
72 Gong T M, Yao P P, Xiong X, et al. Journal of Alloys and Compounds, 2019, 786, 975.
73 Zou H H, Ran X, Zhu W W, et al. Materials, 2018, 11(12), 2414.
74 Wan Y Z, Wang Y L, Cheng G X, et al. Powder Metallurgy, 1998, 41(1), 59.
75 Zhang R, He X B, Chen Z, et al. Vacuum, 2017, 141, 265.
76 Han S C, Li X Q, Xu Z Y. Journal of Hunan University, 1998, 25(5), 30 (in Chinese).
韩绍昌, 李学谦, 徐仲榆. 湖南大学学报, 1998, 25(5), 30.
77 Guo M, Fan Z X, Fu W, et al. Vacuum, 2021, 194, 110591.
[1] 史雪飞, 杨正海, 张永振. 系统弹性对载流摩擦副无电条件下摩擦磨损性能的影响[J]. 材料导报, 2023, 37(5): 21080045-5.
[2] 刘嘉航, 吕哲, 周艳文, 解志文, 陈浩, 程蕾. 用于热障涂层的高熵陶瓷材料研究进展[J]. 材料导报, 2023, 37(22): 22060081-11.
[3] 赵燕春, 张林浩, 师自强, 李文生, 张东, 寇生中. 304不锈钢表面激光熔覆铁基中熵合金涂层组织性能研究[J]. 材料导报, 2023, 37(19): 22050201-7.
[4] 何国宁, 蒋波, 何博, 胡学文, 刘雅政. 集装箱用高强度耐候钢的开发及研究现状[J]. 材料导报, 2022, 36(4): 20090318-9.
[5] 张平, 蒋丽, 杨金学, 苏钲雄, 王建强, 施坦, 卢晨阳. 核用难熔高熵合金的研究进展[J]. 材料导报, 2022, 36(14): 22060260-22.
[6] 王蕊, 王林山, 石韬, 周超, 汪礼敏. 谐波减速器用粉末冶金刚轮材料的摩擦磨损性能研究[J]. 材料导报, 2022, 36(13): 20120260-7.
[7] 朱坤森, 陶平均, 张超汉, 陈育淦, 张维建, 杨元政. Zr基块体非晶合金的成分设计及其性能研究[J]. 材料导报, 2021, 35(24): 24113-24116.
[8] 张莲芝, 吴张永, 王庭有, 朱启晨, 蔡晓明, 莫子勇. 纳米氧化锆多层吸附的模拟及实验研究[J]. 材料导报, 2021, 35(18): 18040-18046.
[9] 李亚林, 孙垒, 曹柳絮, 焦孟旺, 罗伟, 邱振宇, 王畅. 汽车制动盘用铝基复合材料摩擦磨损研究进展[J]. 材料导报, 2020, 34(Z1): 361-365.
[10] 牛犇, 王镇华, 潘钱付, 刘超红, 王清, 董闯. 核电用铁素体/马氏体耐热钢的性能与成分研究进展[J]. 材料导报, 2020, 34(19): 19141-19151.
[11] 黄思睿, 伍昊, 朱和国. 共晶高熵合金的研究进展[J]. 材料导报, 2020, 34(17): 17077-17081.
[12] 姜志鹏, 陈小明, 赵坚, 张磊, 伏利, 刘伟. 激光熔覆技术制备非晶涂层的研究进展与展望[J]. 材料导报, 2019, 33(z1): 191-194.
[13] 徐帅, 陈灵芝, 曹书光, 贾皓东, 周张健. 先进核能系统用ODS钢的显微组织设计与调控研究进展[J]. 材料导报, 2019, 33(1): 78-89.
[14] 王光荣, 高颀, 刘继雄, 杨奇, 王鼎春, 姚锐, 廖松义, 郑峰. β钛合金成分设计:理论、方法、实践[J]. 《材料导报》期刊社, 2017, 31(3): 44-51.
[15] 吕宗敏, 何柏林, 于影霞. 超声冲击对高速列车转向架焊接十字接头超高周疲劳性能的影响*[J]. 《材料导报》期刊社, 2017, 31(20): 77-81.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed