Please wait a minute...
材料导报  2020, Vol. 34 Issue (Z1): 375-379    
  金属与金属基复合材料 |
GH4720Li镍基合金混晶组织对高温持久性能的影响
谢兴飞1,2, 曲敬龙1,2, 杜金辉1,2
1 北京钢研高纳科技股份有限公司,北京 100081;
2 钢铁研究总院高温材料研究所,北京 100081
Effect of Mixed Grain Structure on High Temperature Stress Rupture Propertyof Ni-based GH4720Li Superalloy
XIE Xingfei1,2, QU Jinglong1,2, DU Jinhui1,2
1 Beijing GAONA Materials & Technology Co., LTD, Beijing 100081, China;
2 High Temperature Materials Research Institute, Central Iron and Steel Research Institute, Beijing 100081, China
下载:  全 文 ( PDF ) ( 35346KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 GH4720Li镍基合金具有优良的高温力学性能,被广泛地用于制造航空发动机热端部件。在实际生产过程中GH4720Li合金容易得到含有局部粗晶的混晶组织。利用高温持久实验和扫描电子显微镜技术,研究了680 ℃/830 MPa与730 ℃/530 MPa条件下混晶组织对GH4720Li合金持久性能的影响规律,结果表明680 ℃/830 MPa条件下合金的持久失效机制以晶内位错运动为主,持久寿命随着粗晶数量增加而缩短。混晶中的粗晶含量相同时,晶界滑移机制也会起到一定作用,粗晶尺寸增大可以有效延长持久寿命。730 ℃/530 MPa条件下合金的持久失效机制以晶界滑移机制为主,持久寿命随着粗晶数量增加而延长。混晶中的粗晶含量相同时,持久寿命随着粗晶尺寸增大而缩短。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
谢兴飞
曲敬龙
杜金辉
关键词:  镍基高温合金  GH4720Li合金  高温持久  显微组织  扫描电子显微镜    
Abstract: GH4720Li nickel-based superalloy has excellent high temperature mechanical properties, and has been widely used in hot end components of aero-engine. In the actual production process, it is easy to obtain the mixed crystal structure with local coarse grains in GH4720Li superalloy. In this paper, effect of mixed grains structure in GH4720Li superalloy on rupture property at 680 ℃/830 MPa and 730 ℃/530 MPa was studied through high temperature stress rupture tests and scanning electron microscope. The results indicate that rupture failure mechanism is dominated by the dislocation movement within grains at 680 ℃/830 MPa, and the rupture life decreases with increase of the number of coarse grains. The grain boundary slip mechanism also plays a role when the content of coarse grains in the mixed grains is the similar, and increasing the size of coarse grains can effectively prolong rupture life. Moreover, the rupture failure mechanism at 730 ℃/530 MPa is dominated by grain boundary slip mechanism, and the rupture life is prolonged as increase of the number of coarse grains. For the similar content of coarse grain in mixed grain structure, the rupture life decreases with increase of coarse grain size.
Key words:  Ni-based superalloy    GH4720Li superalloy    high temperature rupture    microstructure    scanning electron microscope
                    发布日期:  2020-07-01
ZTFLH:  TG 146.1+5  
作者简介:  谢兴飞,男,2017年博士毕业于上海交通大学,现为钢铁研究总院高级工程师,主要从事高温合金组织与性能研究。
引用本文:    
谢兴飞, 曲敬龙, 杜金辉. GH4720Li镍基合金混晶组织对高温持久性能的影响[J]. 材料导报, 2020, 34(Z1): 375-379.
XIE Xingfei, QU Jinglong, DU Jinhui. Effect of Mixed Grain Structure on High Temperature Stress Rupture Propertyof Ni-based GH4720Li Superalloy. Materials Reports, 2020, 34(Z1): 375-379.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2020/V34/IZ1/375
1 Pang H T, Reed P A S. International Journal of Fatigue,2008,30(10),2009.
2 Monajati H, Taheri A K, Jahazi M, et al. Metallurgical & Materials Transactions A,2005,36(4),895.
3 Chen J Y, Dong J X, Zhang M C, et al. Materials Science & Engineering A,2016,673(15),122.
4 Qu J L, Xie X F, Bi Z N, et al. Journal of Alloys and Compounds,2019,785(15),918.
5 曲敬龙,杜金辉,毕中南,等.钢铁研究学报,2012,24(2),48.
6 Qu J L, Bi Z N, Du J H, et al. Journal of Iron and Steel Research International,2011,18(10),59.
7 于秋颖,张麦仓,董建新.北京科技大学学报,2013,35(6),763.
8 Billot T, Villechaise P, Jouiad M, et al. International Journal of Fatigue,2010,32(5),824.
9 Song X, Tang L, Chen Z, et al. Journal of Materials Science,2017,52,4587.
10 Agh A, Amini A. International Journal of Minerals, Metallurgy and Materials,2018,25(9),1035.
11 Phan V T, Zhang X, Li Y, et al. Mechanics of Materials,2017,114,215.
12 Thébaud L, Villechaise P, Crozet C, et al. Mateials Science and Engineering A,2018,716,274.13 Cui L, Yu J, Liu J, et al.Mateials Science and Engineering A,2018,710,309.
14 Murakumo T, Kobayashi T, Koizumi Y, et al. Acta Materialia,2004,52,3737.
15 Yao Z H, Zhang M C, Dong J X. Metallurgical and Materials Transactions A,2013,44,3084.
16 朱丽娜,李文,祁峰,等.热加工工艺,2011,40(16),47.
17 Smith T M, Rao Y, Wang Y, et al.Acta Materialia,2017,141,261.
[1] 江雯, 蒋璐瑶, 黄伟九, 郭非, 董海澎. 退火处理对搅拌摩擦加工LZ91双相镁锂合金微观组织及力学性能的影响[J]. 材料导报, 2020, 34(Z1): 307-311.
[2] 谢锐, 吕铮, 卢晨阳, 王晴, 徐世海, 刘春明. 热等静压温度对14Cr-ODS钢显微组织及力学性能的影响[J]. 材料导报, 2020, 34(8): 8141-8148.
[3] 周宇, 钱丽华, 刘天宇, 张泉, 吕知清. 冷轧板条马氏体组织与力学性能研究[J]. 材料导报, 2020, 34(8): 8154-8158.
[4] 王婷玥, 邢书明, 敖晓辉, 王营. 压力对挤压铸造E级钢低温冲击韧性的影响[J]. 材料导报, 2020, 34(6): 6138-6143.
[5] 陈国庆, 张戈, 尹乾兴, 张秉刚, 冯吉才. TiAl合金焊接裂纹控制研究进展[J]. 材料导报, 2020, 34(5): 5115-5119.
[6] 郭丽丽, 苑菁茹, 汪建强, 李永兵. ZK60镁合金中空型材挤压成形的有限元模拟及组织和性能[J]. 材料导报, 2020, 34(2): 2072-2076.
[7] 谭金花, 孙荣禄, 牛伟, 刘亚楠, 郝文俊. 激光扫描速度对TC4合金表面激光熔覆复合涂层组织及性能的影响[J]. 材料导报, 2020, 34(12): 12094-12100.
[8] 张雪飞, 白景元, 管仁国. 半固态搅拌参数对A356-10%B4Cp复合材料显微组织的影响[J]. 材料导报, 2020, 34(10): 10103-10107.
[9] 金峰, 熊江涛, 石俊秒, 郭德伦, 李京龙. GH4169旋转摩擦焊飞边成形机理研究[J]. 材料导报, 2020, 34(10): 10144-10149.
[10] 费文潘, 薛松柏, 陈宇豪, 吴杰, 王博, 林中强. Sr、La复合添加对SAl 4047焊丝氢含量及焊接接头力学性能的影响[J]. 材料导报, 2020, 34(10): 10150-10156.
[11] 洪起虎, 燕绍九, 陈翔, 李秀辉, 舒小勇, 吴廷光. GO添加量对RGO/Cu复合材料组织与性能的影响[J]. 材料导报, 2019, 33(z1): 62-66.
[12] 平学龙, 符寒光, 孙淑婷. 激光熔覆制备硬质颗粒增强镍基合金复合涂层的研究进展[J]. 材料导报, 2019, 33(9): 1535-1540.
[13] 王川, 李德富. 冷轧变形量对5A02铝合金管材组织和性能的影响[J]. 材料导报, 2019, 33(8): 1361-1366.
[14] 王应武, 左孝青, 冉松江, 孔德昊. TiB2含量及T6热处理对原位TiB2/ZL111复合材料显微组织和硬度的影响[J]. 材料导报, 2019, 33(8): 1371-1375.
[15] 温丽, 薛松柏, 马超力, 龙伟民, 钟素娟. 钎焊温度对纳米银焊膏真空钎焊Ni200合金接头组织与性能的影响[J]. 材料导报, 2019, 33(3): 386-389.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed