Please wait a minute...
材料导报  2020, Vol. 34 Issue (Z1): 380-384    
  金属与金属基复合材料 |
镀铜石墨/铜复合材料的组织和摩擦磨损性能
秦笑1,2, 王娟1,3,4, 林高用2, 郑开宏1,3,4, 王海艳1,3, 冯晓伟1,3,4
1 广东省科学院广东省材料与加工研究所,广州 510650;
2 中南大学材料科学与工程学院,长沙 410012;
3 广东省金属强韧化技术与应用重点实验室,广州 510650;
4 梅州市粤科新材料与绿色制造研究院,梅州 514768
Microstructure, Friction and Wear Properties of Copper-CoatedGraphite/Copper Composites
QIN Xiao1,2, WANG Juan1,3,4, LIN Gaoyong2, ZHENG Kaihong1,3,4, WANG Haiyan1,3, FENG Xiaowei1,3,4
1 Guangdong Institute of Materials and Processing, Guangdong Academy of Science, Guangzhou 510650, China;
2 School of Materials Science and Engineering, Central South University, Changsha 410012, China;
3 Guangdong Provincial Key Laboratory of Metal Toughening Technology and Application, Guangzhou 510650, China;
4 Institute of Meizhou Yueke New Materials and Green Manufacturing, Meizhou 514768, China
下载:  全 文 ( PDF ) ( 9731KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本实验以电解铜粉为基体,镀铜石墨为润滑相,采用放电等离子烧结技术(SPS)制备镀铜石墨/铜复合材料,研究了镀铜石墨含量对复合材料微观组织、硬度、孔隙率和摩擦磨损性能的影响。结果表明:镀铜石墨均匀分散在Cu基体中能细化晶粒、均匀组织,石墨表面镀铜层能够增强石墨与Cu基体的界面结合。当镀铜石墨含量超过4wt%,复合材料的硬度和孔隙率变化幅度明显增大。镀铜石墨具有细晶强化作用,能提升复合材料的硬度,其含量为4wt%时,复合材料的硬度达到最大值57.8HV,但镀铜石墨含量和孔隙率的共同作用使得复合材料的硬度呈先增大后减小的趋势。随着镀铜石墨含量增加,复合材料孔隙率逐渐增大,摩擦系数、磨损量逐渐减少,镀铜石墨含量为8wt%时,复合材料的摩擦系数、磨损量相比纯铜分别降低63.9%、96.3%。镀铜石墨作为润滑相紧密镶嵌在铜基体中,显著提高了复合材料的摩擦磨损性能。复合材料摩擦磨损机理主要为磨粒磨损、粘着磨损和氧化磨损。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
秦笑
王娟
林高用
郑开宏
王海艳
冯晓伟
关键词:  镀铜石墨  镀铜石墨/铜复合材料  微观组织  细晶强化  摩擦磨损    
Abstract: Copper-coated graphite/copper composites were prepared by spark plasma sintering (SPS) with electrolytic copper powder as matrix and copper-coated graphite as lubrication phase. The effect of graphite content on microstructure, hardness, porosity, friction and wear properties of the composites were investigated. Results shows that the copper-coated graphite can be uniformly dispersed in the Cu matrix to refine the grains and uniform structure. The copper-coated layer on the graphite surface can enhance the interfacial bonding strength between graphite and Cu matrix. When the content of copper-coated graphite was over 4wt%, the change range of hardness and porosity of the composite material increased significantly. The copper-coated graphite had a fine-grained strengthening effect to enhance the hardness of the composite. When the content of copper-coated graphite was 4wt%, the hardness reached a maximum of 53.6HV, but the combined effect of the copper-coated graphite content and the porosity causes the hardness to increase first and then decrease. As the content of copper-coated graphite increases, the porosity of composites increased remarkably, and the friction coefficient and wear amount decreased gradually. When the content of copper-coated gra-phite was 8wt%, the friction coefficient and wear of composites were reduced by 63.9%, 96.3%, respectively, compared with pure copper. The copper-coated graphite was tightly embedded in the copper matrix as a lubricating phase, which significantly improved the friction and wear pro-perties of the composite. The friction and wear mechanism of composites were mainly abrasive wear, adhesive wear and oxidative wear.
Key words:  copper-coated graphite    copper-coated graphite/copper composites    microstructure    fine-grain strengthening    friction and wear
                    发布日期:  2020-07-01
ZTFLH:  TG146.1+1  
基金资助: 广东省科学院实施创新驱动发展能力建设专项(2019GDASYL-0502009);广东省科技计划项目(2017A070701029;2017A050503004;2018dr005);广东省科学院发展专项资金项目(2019GDASYL-0302017)
作者简介:  秦笑,2013年在辽宁工程技术大学材料科学与工程学院金属材料工程专业获得学士学位,2017年就读中南大学材料科学与工程学院材料加工工程专业硕士。主要从事金属基复合材料的研究;王娟,教授级高级工程师。2017年当选为“广东特支计划”科技创新青年拔尖人才。主要从事高性能陶瓷增强金属基复合材料的制备及其产业化应用,并围绕钢铁耐磨材料、先进结构陶瓷、界面连接、复合焊料、材料基因工程等方向开展科研工作。主持/参与国家、省、市科研项目50余项,项目经费累计超过3000万元。发表论文30余篇,出版专著1部。牵头或参与制定国家标准、团体标准及企业标准11件。申请发明专利60件,获得授权发明专利33件。获得广东省专利金奖、广东省科技进步一等奖、中国有色工业科学技术一等奖等各级别奖项8件。华南理工大学、广东工业大学、沈阳工业大学、南华大学等学校材料工程领域专业学位硕士研究生校外指导教师,是中国有色金属产业技术创新联盟专家委员会委员、广东省金属基复合材料产业技术创新联盟秘书长以及广东省3D打印产业技术创新联盟理事。
引用本文:    
秦笑, 王娟, 林高用, 郑开宏, 王海艳, 冯晓伟. 镀铜石墨/铜复合材料的组织和摩擦磨损性能[J]. 材料导报, 2020, 34(Z1): 380-384.
QIN Xiao, WANG Juan, LIN Gaoyong, ZHENG Kaihong, WANG Haiyan, FENG Xiaowei. Microstructure, Friction and Wear Properties of Copper-CoatedGraphite/Copper Composites. Materials Reports, 2020, 34(Z1): 380-384.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2020/V34/IZ1/380
1 Rajkumar K, Kundu K, Aravindan S, et al. Materials and Design,2011,32(5),3029.
2 Futamia T, Ohirab M, Mutoa H, et al. Cabon,2009,47(11),2742.
3 Sapate S G, Uttarwar A, Rathod R C, et al. Materials and Design,2009,30(2),376.
4 冉旭,黄显峰,段利利,等.材料导报:研究篇,2012,26(4),33.
5 Yasar I, Canakci A, Arslan F. Tribology International,2007,40(9),1381.
6 Grandin M, Wiklund U. Tribology International,2018,121,1.
7 钱刚,凤仪,张学斌,等.表面技术,2016,45(1),7.
8 Da H H, Manory R, Sinkis H. Wear,2000,239(1),10.
9 宋影影,李佳节,张彪.稀有金属与硬质合金,2010,38(3),13.
10 Bolotin K I, Sikes K J, Jung G, et al. Solid State Communications,2008,146(9-10),351.
11 张蓓,张治国,李卫.材料导报:综述篇,2012,26(11),92.
12 杜平,张伟,刘志兰,等.表面技术,2018,47(6),222.
13 Moustafa S F, Elbadry S A, Sanad A M, et al. Wear,2002,253(7),699.
14 余刚,邹超,胡波年,等.湖南大学学报(自然科学版),2011,38(2),60.
15 Chen J, Ren S, He X, et al. Carbon,2017,121(9),25.
16 李雅文,丁华东,浩宏奇,等.稀有金属材料与工程,1998,(3),182.
17 焦明华,尹延国,俞建卫,等.中国有色金属学报,2007,17(10),1637.
18 Kovacik J, Emmer S, Bielek J, et al. Wear,2008,265(3-4),417.
19 马垚,周张健,姚伟志,等.材料导报,2008,22(7),60
20 Nayan N, Shukla A K, Chandran P, et al. Materials Science & Enginee-ring A,2017,682,229.
21 Harun A, Elizabeth A H, Mike P, et al. Acta Materialia,2006,54(12),3261.
22 Couturier G, Doherty R, Maurice C, et al. Acta Materialia,2005,53(4),977.
23 Kim B N, Kishi T. Acta Materialia,1999,47(7),2293.
24 Liu X, Wei D, Zhuang L, et al. Materials Science & Engineering A,2015,642,1.
25 Ke C, Jia C. Physica Status Solidi,2014,211(1),184.
26 路君,曾小勤,丁文江.轻金属,2008(8),59.
27 黄培云.粉末冶金原理,机械工业出版社,1997.
[1] 张洋, 张海燕, 陈蕴博, 王大鹏, 陈林, 刘晓萍. 热处理对热压制备Al-Cu-Mg/SiCp制动耐磨复合材料组织及磨损性能的影响[J]. 材料导报, 2020, 34(Z1): 356-360.
[2] 李亚林, 孙垒, 曹柳絮, 焦孟旺, 罗伟, 邱振宇, 王畅. 汽车制动盘用铝基复合材料摩擦磨损研究进展[J]. 材料导报, 2020, 34(Z1): 361-365.
[3] 黄文豪, 陶平均, 龙德武, 张超汉, 朱坤森, 杨元政. 低树脂基NAO型盘式刹车片摩擦材料的制备及摩擦学性能[J]. 材料导报, 2020, 34(Z1): 563-566.
[4] 徐骏, 朱立坚, 刘刚, 宋炳坷. DLC-PFPE固液复合润滑体系的摩擦磨损性能研究[J]. 材料导报, 2020, 34(Z1): 567-571.
[5] 刘钊扬, 熊柏青, 张永安, 李志辉, 李锡武, 闫丽珍, 温凯. 汽车车身板用6A16铝合金拉深成形金属流动和微观组织相关性研究[J]. 材料导报, 2020, 34(8): 8119-8125.
[6] 张松, 杨静, 胥永刚, 张明月. 仿SIMA法钎焊对Mn-Cu合金与430不锈钢接头组织及性能的影响[J]. 材料导报, 2020, 34(8): 8126-8130.
[7] 信思树, 王镇华, 李春玲, 王清. 体心立方BCC基多元合金中的共格析出及强化[J]. 材料导报, 2020, 34(7): 7130-7137.
[8] 蔺宏涛, 孟强, 王怡嵩, 王家毅, 张韵, 江海涛. 旋转速度对高强度钢Q&P980搅拌摩擦焊接头组织与性能的影响[J]. 材料导报, 2020, 34(6): 6126-6131.
[9] 谭雅琴, 王晓明, 朱胜, 乔珺威. 高熵合金强韧化的研究进展[J]. 材料导报, 2020, 34(5): 5120-5126.
[10] 陈健, 周莉, 刘金洋, 吉红伟, 杨勇, 刘伟, 邓欣, 伍尚华. 真空和渗氮烧结WC-TiC-Co硬质合金的梯度结构形成机理研究[J]. 材料导报, 2020, 34(4): 4077-4082.
[11] 王向杰, 冯蕾, 武靖亭, 肖新华, 苏蓓蓓. 搅拌摩擦焊接ZK60镁合金弯曲性能与断裂行为研究[J]. 材料导报, 2020, 34(4): 4083-4086.
[12] 刘轩之,顾开选 ,翁泽钜,王凯凯,崔晨,郭嘉,王俊杰. 铝合金深冷处理研究进展[J]. 材料导报, 2020, 34(3): 3172-3177.
[13] 王文权, 李雅倩, 李欣, 刘亮, 陈飞. 选区激光熔化制备Ni-Cr-B-Si合金粉末的微观组织与性能[J]. 材料导报, 2020, 34(2): 2077-2082.
[14] 邹田春, 欧尧, 祝贺, 秦嘉徐. 激光选区熔化AlSi7Mg合金的微观组织和力学性能[J]. 材料导报, 2020, 34(10): 10098-10102.
[15] 仇一卿, 范祝男, 黄春平, 李宝华, 唐众民. 厚板Cu-Cr-Zr合金搅拌摩擦焊接接头沿厚度方向组织和力学性能的变化[J]. 材料导报, 2020, 34(10): 10162-10165.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed