Please wait a minute...
材料导报  2020, Vol. 34 Issue (Z1): 385-389    
  金属与金属基复合材料 |
锆在硫酸提浓工艺中的腐蚀研究
王鹏, 张卫刚, 孙旭东
西部金属材料股份有限公司,西安 710201
Study on Corrosion of Zirconium in Sulfuric Acid Concentration Process
WANG Peng, ZHANG Weigang, SUN Xudong
Western Metal Materials Co., Ltd., Xi'an 710201, China
下载:  全 文 ( PDF ) ( 3996KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以目前国内废硫酸真空提浓工艺中锆材耐腐蚀情况为研究对象,通过多种环境和试验方法对锆及预膜锆在硫酸浓缩中的腐蚀行为进行研究。首先在实验室采用观察法及重量法对锆合金在不同浓度、温度工况下腐蚀情况进行研究,进而分析温度、浓度对锆合金腐蚀的影响,讨论废酸浓缩中锆的适用范围;然后使用电化学方法,讨论锆合金和预膜锆在100 ℃、70%(质量分数)硫酸工况下的电化学行为,测量出极化曲线,通过对极化曲线分析测量出两种试样的腐蚀速率差。本工作为废硫酸提浓工艺提供了选材支持,同时为蒸发器安全服役提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王鹏
张卫刚
孙旭东
关键词:  锆合金  硫酸  腐蚀  极化曲线    
Abstract: Based on the current domestic waste sulfuric acid concentration in the process of zirconium corrosion as the research object, the corrosion behavior of zirconium and premembrane zirconium in sulfuric acid concentration was studied by various experimental methods.Firstly, the corrosion of zirconium alloy at different temperature and different concentration was studied by observation method and gravimetric method in laboratory,and discuss the applicable scope of waste acid concentration in zirconium.Electrochemical behavior of zirconium alloy and premembrane zirconium under 100 ℃ and 70%(mass fraction) sulfuric acid was discussed. The polarization curves were measured. The corrosion rate difference between the two samples was measured by analysis of the polarization curves. This work provides material selection support for waste sulfuric acid concentration process, and provides reference for safety service of evaporator.
Key words:  zirconium alloy    sulfuric acid    corrosion    polarization curve
                    发布日期:  2020-07-01
ZTFLH:  TG174.2  
基金资助: 陕西省科技创新团队项目(2019TD-037)
作者简介:  王鹏,高级工程师,主要从事稀有金属材料加工以及先进金属材料应用研究;张卫刚,高级工程师,主要从事稀有金属材料加工以及先进金属材料应用研究。
引用本文:    
王鹏, 张卫刚, 孙旭东. 锆在硫酸提浓工艺中的腐蚀研究[J]. 材料导报, 2020, 34(Z1): 385-389.
WANG Peng, ZHANG Weigang, SUN Xudong. Study on Corrosion of Zirconium in Sulfuric Acid Concentration Process. Materials Reports, 2020, 34(Z1): 385-389.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2020/V34/IZ1/385
1 马林K M,等,著.李敦化,李伟强,译.硫酸工学(下册),高等教育出版社,1956.
2 TSG 21-2016,固定式压力容器安全技术监察规程,新华出版社,2016.
3 桑建新.硫酸工业,2016(1),62.
4 王鹏,周好斌,蒋丽娟,等.压力容器.2016,33(8),65.
5 郭建民,许丽,张敬宇.氯碱工业,2009(1),40.
6 王鹏,周好斌,蒋丽娟,等.设备管理与维修,2016,384(2),89.
7 王鹏,张成,王一安,等.石油化工设备,2016,45(4),68.
8 Scheel R P E.硫酸工业,2003(5),23.
9 梁成浩,勇艳华,陈邦义.钛工业进展,2005(3),10.
10 张向宇,白新德.稀有金属材料与工程,2005(6),841.
11 王浩然,邱长军.世界有色金属,2016(18),46.
12 丁长安,季朗勤.稀有金属材料与工程,1984(6),16.
[1] 代朝猛, 王泽雨, 段艳平, 刘曙光, 涂耀仁, 李彦. 过硫酸盐高级氧化技术在土壤和地下水修复中的研究进展[J]. 材料导报, 2020, 34(Z1): 107-110.
[2] 赵宇航, 王永旺. 硅酸盐胶黏剂在高温磨蚀条件下的退化行为[J]. 材料导报, 2020, 34(Z1): 181-184.
[3] 王梦宇, 李崇智, 牛振山. 渗透结晶型防护剂对混凝土防水抗蚀性能的影响[J]. 材料导报, 2020, 34(Z1): 185-188.
[4] 唐伍实秋, 王斌, 江明晏, 周椤, 叶洋呈. 锆合金表面氟化物-磷酸盐预镀层的制备及对化学镀层性能的影响[J]. 材料导报, 2020, 34(Z1): 390-394.
[5] 程海松, 刘岗, 雷刚, 谭俊, 陈春彦, 梁勇, 苏岳亮, 吴开颜, 杜永斌. 燃煤锅炉受热面高温腐蚀防护涂层技术研究进展[J]. 材料导报, 2020, 34(Z1): 433-435.
[6] 魏乔苑, 李跃忠, 赵毛毛, 冉小兵. 水环境对控制棒驱动机构Ω焊缝母材应力腐蚀的影响[J]. 材料导报, 2020, 34(Z1): 462-465.
[7] 高治峰, 董丽虹, 王海斗, 吕振林, 郭伟, 王博正. 振动红外热成像技术用于不同类型缺陷检测的研究进展[J]. 材料导报, 2020, 34(9): 9158-9163.
[8] 梁惠东, 郑汉杰, 杨浩, 王晨, 陈俊锋, 汪炳叔. 氮添加量对块体纳米晶NdFeB永磁材料的影响[J]. 材料导报, 2020, 34(8): 8025-8030.
[9] 陶继闯, 卢一平. Mo含量对Al0.1CoCrCu0.5FeNiMox高熵合金的组织结构、力学性能及耐蚀性能的影响[J]. 材料导报, 2020, 34(8): 8096-8099.
[10] 徐道芬, 陈康华, 胡桂云, 陈送义. 微量稀土Ce对Al-Zn-Mg铝合金组织和腐蚀性能的影响[J]. 材料导报, 2020, 34(8): 8100-8105.
[11] 陈钢, 鞠娜, 雷玉成, 王丹, 朱强, 李天庆, 陈璐. 430不锈钢在550℃流动Pb-Bi合金中的腐蚀行为[J]. 材料导报, 2020, 34(6): 6105-6108.
[12] 吴文博, 张志明, 王俭秋, 韩恩厚, 柯伟. 热老化316L不锈钢在模拟核电溶解氧/氢高温高压水中应力腐蚀裂纹扩展行为[J]. 材料导报, 2020, 34(6): 6144-6150.
[13] 陈灵芝, 周张健, CarstenSchroer. 铅冷能源系统中液态金属与铁基合金相容性的研究进展[J]. 材料导报, 2020, 34(5): 5096-5101.
[14] 杨振飞, 史鹏, 敖冰云. 锆合金中的氢化物脱附行为研究进展[J]. 材料导报, 2020, 34(5): 5102-5108.
[15] 马潇磊, 张成成, 张朝磊, 马晓艺, 赵海东, 方文. 基于“混杂”设计的索氏体新型不锈钢的组织和性能[J]. 材料导报, 2020, 34(4): 4103-4107.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed