Abstract: Metamaterial absorber has become a research focus in the field of electromagnetic stealth and protection, and a series of important research results has been achieved recently.The specific electromagnetic properties induced by the unique artificial periodic structures of metamaterial, would better meet the comprehensive performance requirements of ‘thin, light, wide, and strong’ for absorbing devices, but the broadband absorbing is still the big challenge for designing metamaterial absorbing devices. Compared with traditional metal-based absorbers, water-based metamaterial absorber could achieve efficiently broadband microwave properties due to the unique dispersion characteristics of water at the microwave frequency range. Though breakthrough research results for water-based metamaterial absorbers have been achieved in recent years, there are still some unclear problems that need to be summarized and analyzed for water-based metamaterial absorbers. In this paper, based on the components and structural properties, the characteristics of pure water, water-solution and composited water-based metamaterial absorbers are introduced. The potential application of water-based metamaterial absorbers in the microwave frequency range is explained, and the research trend of multifunctional water-based metamaterial absorbers is prospected based on literatures.
通讯作者:
*杜立飞,西安科技大学材料科学与工程学院副教授、硕士研究生导师。2008年西北工业大学应用物理学系材料物理专业本科毕业,2014年西北工业大学材料物理与化学专业博士毕业后到西安科技大学工作至今。2010年1月至2012年1月在美国宾夕法尼亚州立大学访问学习。目前主要从事材料相变过程的多尺度模拟及电磁隐身超材料设计等方面的工作。发表论文50余篇,包括Journal of the European Ceramic Society、Journal of Materials Science、Journal of Alloys and Compounds,Philosophical Magazine、Progress in Natural Science、Materials International等。dulifei@xust.edu.cn
1 Zhou Y F. The study of water-based wideband metamaterial absorber. Master's Thesis, Huazhong Normal University, China, 2020 (in Chinese). 周彦飞. 水基超材料宽带吸波体的研究. 硕士学位论文, 华中师范大学, 2020. 2 Yan X X. Research on ultra-wideband and temperature-tunable reconfigutable frequency selective rasorber. Master's Thesis, Nanjing University of Aeronautics and Astronautics, China, 2020 (in Chinese). 严祥熙. 超宽带及温度调节可重构频率选择吸波体研究. 硕士学位论文, 南京航空航天大学, 2020. 3 Zhang X Q, Yan F P, Du X M, et al. Chinese Journal of Lasers, 2021, 48(16), 221 (in Chinese). 仉晓琦, 延凤平, 杜雪梅, 等. 中国激光, 2021, 48(16), 221. 4 Wei Y P, Zhu J Z, Lin J P, et al. Materials Reports, 2021, 35(15), 15205 (in Chinese). 魏玉鹏, 朱俊志, 蔺景鹏, 等. 材料导报, 2021, 35(15), 15205. 5 Fu B Q. Preparation of garaphene porous composites and their electromagnetic shielding and absorbing properties. Master's Thesis, Xi'an University of Technology, China, 2021 (in Chinese). 伏柏桥. 石墨烯多孔复合材料的制备及其电磁屏蔽和吸波性能研究. 硕士学位论文, 西安理工大学, 2021. 6 Ye W P. Preparation of low dimensional carbon composites for microwave absorption property. Master's Thesis, University of Electronic Science and Technology, China, 2021 (in Chinese). 叶伟平. 低维碳复合材料的制备及其吸波特性的研究. 硕士学位论文, 电子科技大学, 2021. 7 Zhou Y L. Low dimensional carbon-based composites synthesized by arc discharge method and their microwave absorption properties. Ph.D. Thesis, Dalian University of Technology, China, 2020 (in Chinese). 周远良. 低维碳基复合材料的电弧法制备及其吸波性能研究. 博士学位论文, 大连理工大学, 2020. 8 Shen Y, Zhang J, Pang Y, et al. Scientific Reports, 2018, 8(1), 4423. 9 Feng Q. Research on the preparation and electromagnetic wave absor-bing properties of mxene and its composites. Master's Thesis, University of Electronic Science and Technology, China, 2021 (in Chinese). 冯强. MXene及其复合材料的制备与吸波性能的研究. 硕士学位论文, 电子科技大学, 2021. 10 Cao S B. Preparation and microwave absorbing properties of 3D graphene, and 3D graphene/Ni composite. Master's Thesis, Hunan University, China, 2018 (in Chinese). 曹树彬. 三维石墨烯及其复合材料的制备与吸波性能的研究. 硕士学位论文, 湖南大学, 2018. 11 Li X. Preparation and microwave absorption properties of conductive polyaniline and its nanocomposites. Master's Thesis, Zhejiang Sci-Tech University, China, 2020 (in Chinese). 李想. 导电聚苯胺及其复合材料的制备和吸波性能研究. 硕士学位论文, 浙江理工大学, 2020. 12 Zhong X. Study of preparation and electromagnetic wave absorption pro-perties of Fe-based magnetic micro/nano particles and its composites. Master's Thesis, Beijing Institute of Technology, China, 2016 (in Chinese). 钟璇. Fe基磁性微/纳颗粒及其复合材料的制备与电磁吸波性能研究. 硕士学位论文, 北京理工大学, 2016. 13 Wang M. Preparation and microwave absorption performance of nickel zinc ferrite and its composites. Master's Thesis, Nanjing University of Aeronautics and Astronautics, China, 2015 (in Chinese). 王敏. 镍锌铁氧体及其复合材料的制备与吸波性能研究. 硕士学位论文, 南京航空航天大学, 2015. 14 Wu N N. Preparation and electromagnetic wave absorption properties of magnetic nanocomposites. Ph.D. Thesis, Shandong University, China, 2019 (in Chinese). 吴楠楠. 磁性纳米复合材料的制备及其电磁波吸收性能. 博士学位论文, 山东大学, 2019. 15 Wang Q, Bi K, Lim S. IEEE Access, 2020, 8, 175998. 16 Zhang H, Ling F, Wang H, et al. Optics Communications, 2020, 463, 125394. 17 Luo H, Cheng Y Z. Journal of Electronic Materials, 2017, 47(1), 323. 18 Cheng Y, Luo H, Chen F. Journal of Applied Physics, 2020, 127(21), 214902. 19 Huang Y, Luo J, Pu M, et al. Adv Sci (Weinh), 2019, 6(7), 1801691. 20 Chen H J, Yang X Q. In:2018 National Microwave and Millimeter Wave Conference. Chengdu, China, 2018, pp. 131 (in Chinese). 陈会杰, 杨晓庆. 2018年全国微波毫米波会议, 成都, 2018,pp. 131. 21 Khuyen B X, Hanh V T H, Tung B S, et al. Crystals, 2020, 10(5), 415. 22 Zhou Y, Shen Z, Wu J, et al. Applied Physics B, 2020, 126(3), 52. 23 Chen F, Cheng Y, Luo H. IEEE Access, 2020, 8, 82981. 24 Pang Y, Wang J, Cheng Q, et al. Applied Physics Letters, 2017, 110(10), 104103. 25 Huang X, Yang H, Shen Z, et al. Journal of Physics D, Applied Physics, 2017, 50(38), 385304. 26 Xie J, Zhu W, Rukhlenko I D, et al. Optics Express, 2018, 26(4), 5052. 27 Ren J, Yin J Y. Optical Materials Express, 2018, 8(8), 2060. 28 Li S, Shen Z, Yang H, et al. Plasmonics, 2021, 16(4), 1269. 29 Zhou Y, Shen Z, Huang X, et al. Physics Letters A, 2019, 383(23), 2739. 30 Zhang X, Yan F, Du X, et al. AIP Advances, 2020, 10(5), 055211. 31 Yoo Y J, Ju S, Park S Y, et al. Science Reports, 2015, 5, 14018. 32 Odit M, Kapitanova P, Andryieuski A, et al. Applied Physics Letters, 2016, 109(1), 011901. 33 Song Q, Zhang W, Wu P C, et al. Advanced Optical Materials, 2017, 5(8), 1601103. 34 Zhao J, Wei S, Wang C, et al. Optics Express, 2018, 26(7), 8522. 35 Zhang X, Zhang D, Fu Y, et al. IEEE Antennas and Wireless Propagation Letters, 2020, 19(5), 821. 36 Chen Y, Chen K, Zhang D, et al. Photonics Research, 2021, 9(7), 1391. 37 Pang Y, Shen Y, Li Y, et al. Journal of Applied Physics, 2018, 123(15), 155106. 38 Wu Z, Chen X, Zhang Z, et al. Applied Physics Express, 2019, 12(5), 057003. 39 Zhang J, Wu X, Liu L, et al. Opt Express, 2019, 27(18), 25595. 40 Xiong H, Yang F. Optics Express, 2020, 28(4), 5306. 41 Chen X, Wu Z, Zhang Z, et al. Physica E, Low-dimensional Systems and Nanostructures, 2020, 120, 114017. 42 Shen Y, Zhang J, Pang Y, et al. Optics Express, 2018, 26(12), 15665. 43 Rajabalipanah H, Abdolali A, Mohammadi M. Journal of Physics D, Applied Physics, 2021, 54(22), 225302. 44 Gao Z, Fan Q, Tian X, et al. Optical Materials, 2021, 112, 110793. 45 Zhang Y, Dong H, Mou N, et al. Nanoscale, 2021, 13(16), 7831. 46 Zhou Q, Yin X W, Zhang L T, et al. Science and Technology Review, 2016, 34(18), 40 (in Chinese). 周倩, 殷小玮, 张立同, 等. 科技导报, 2016, 34(18), 40. 47 Zhang Y N, Chen K A, Hao X Y, et al. Chinese Science Bulletin, 2020, 65(15), 1396 (in Chinese). 张燕妮, 陈克安, 郝夏影, 等. 科学通报, 2020, 65(15), 1396.