Please wait a minute...
材料导报  2023, Vol. 37 Issue (18): 21120076-7    https://doi.org/10.11896/cldb.21120076
  无机非金属及其复合材料 |
水基吸波超材料的研究进展
师甜甜, 杜立飞*, 张海锋, 田闰博
西安科技大学材料科学与工程学院,西安 710054
Research Progress on Water-based Metamaterial Absorbers
SHI Tiantian, DU Lifei*, ZHANG Haifeng, TIAN Runbo
School of Materials Science and Engineering, Xi'an University of Science and Technology, Xi'an 710054, China
下载:  全 文 ( PDF ) ( 5711KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 吸波超材料已经成为国内外电磁隐身和防护领域的研究热点,并取得了一系列重要的研究成果。超材料独有的人工周期性结构能够引发特异的电磁特性,从而满足吸波器件 “薄、轻、宽、强”的综合性能要求,其中宽频吸波仍然是超材料吸波器件设计的难点。与传统金属基吸收体相比,水在微波频段特有的频散效应有助于实现水基吸波体在此频率范围内的高效吸收。近年来,宽频水基吸波超材料已经取得了一定的突破,但依旧存在一些问题需进行总结分析。本文综述了近年来水基吸波超材料的重要研究进展,按照吸波介质与结构特性,分类介绍了基于单纯水、水溶液和复合型水基吸波超材料的主要特征,展开说明了水基吸波超材料在微波频段的应用优势,并在此基础上展望了水基吸波超材料多功能化的研究趋势。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
师甜甜
杜立飞
张海锋
田闰博
关键词:  吸波超材料  宽频吸收    多功能化    
Abstract: Metamaterial absorber has become a research focus in the field of electromagnetic stealth and protection, and a series of important research results has been achieved recently.The specific electromagnetic properties induced by the unique artificial periodic structures of metamaterial, would better meet the comprehensive performance requirements of ‘thin, light, wide, and strong’ for absorbing devices, but the broadband absorbing is still the big challenge for designing metamaterial absorbing devices. Compared with traditional metal-based absorbers, water-based metamaterial absorber could achieve efficiently broadband microwave properties due to the unique dispersion characteristics of water at the microwave frequency range. Though breakthrough research results for water-based metamaterial absorbers have been achieved in recent years, there are still some unclear problems that need to be summarized and analyzed for water-based metamaterial absorbers. In this paper, based on the components and structural properties, the characteristics of pure water, water-solution and composited water-based metamaterial absorbers are introduced. The potential application of water-based metamaterial absorbers in the microwave frequency range is explained, and the research trend of multifunctional water-based metamaterial absorbers is prospected based on literatures.
Key words:  microwave absorbing metamaterial    broadband absorption    water    multi-function
出版日期:  2023-09-25      发布日期:  2023-09-18
ZTFLH:  TB34  
通讯作者:  *杜立飞,西安科技大学材料科学与工程学院副教授、硕士研究生导师。2008年西北工业大学应用物理学系材料物理专业本科毕业,2014年西北工业大学材料物理与化学专业博士毕业后到西安科技大学工作至今。2010年1月至2012年1月在美国宾夕法尼亚州立大学访问学习。目前主要从事材料相变过程的多尺度模拟及电磁隐身超材料设计等方面的工作。发表论文50余篇,包括Journal of the European Ceramic Society、Journal of Materials Science、Journal of Alloys and Compounds,Philosophical Magazine、Progress in Natural Science、Materials International等。dulifei@xust.edu.cn   
作者简介:  师甜甜,2020年7月于西安科技大学获得工学学士学位。现为西安科技大学材料科学与工程学院硕士研究生,在杜立飞副教授的指导下进行研究。目前主要研究领域为电磁波吸收材料。
引用本文:    
师甜甜, 杜立飞, 张海锋, 田闰博. 水基吸波超材料的研究进展[J]. 材料导报, 2023, 37(18): 21120076-7.
SHI Tiantian, DU Lifei, ZHANG Haifeng, TIAN Runbo. Research Progress on Water-based Metamaterial Absorbers. Materials Reports, 2023, 37(18): 21120076-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21120076  或          http://www.mater-rep.com/CN/Y2023/V37/I18/21120076
1 Zhou Y F. The study of water-based wideband metamaterial absorber. Master's Thesis, Huazhong Normal University, China, 2020 (in Chinese).
周彦飞. 水基超材料宽带吸波体的研究. 硕士学位论文, 华中师范大学, 2020.
2 Yan X X. Research on ultra-wideband and temperature-tunable reconfigutable frequency selective rasorber. Master's Thesis, Nanjing University of Aeronautics and Astronautics, China, 2020 (in Chinese).
严祥熙. 超宽带及温度调节可重构频率选择吸波体研究. 硕士学位论文, 南京航空航天大学, 2020.
3 Zhang X Q, Yan F P, Du X M, et al. Chinese Journal of Lasers, 2021, 48(16), 221 (in Chinese).
仉晓琦, 延凤平, 杜雪梅, 等. 中国激光, 2021, 48(16), 221.
4 Wei Y P, Zhu J Z, Lin J P, et al. Materials Reports, 2021, 35(15), 15205 (in Chinese).
魏玉鹏, 朱俊志, 蔺景鹏, 等. 材料导报, 2021, 35(15), 15205.
5 Fu B Q. Preparation of garaphene porous composites and their electromagnetic shielding and absorbing properties. Master's Thesis, Xi'an University of Technology, China, 2021 (in Chinese).
伏柏桥. 石墨烯多孔复合材料的制备及其电磁屏蔽和吸波性能研究. 硕士学位论文, 西安理工大学, 2021.
6 Ye W P. Preparation of low dimensional carbon composites for microwave absorption property. Master's Thesis, University of Electronic Science and Technology, China, 2021 (in Chinese).
叶伟平. 低维碳复合材料的制备及其吸波特性的研究. 硕士学位论文, 电子科技大学, 2021.
7 Zhou Y L. Low dimensional carbon-based composites synthesized by arc discharge method and their microwave absorption properties. Ph.D. Thesis, Dalian University of Technology, China, 2020 (in Chinese).
周远良. 低维碳基复合材料的电弧法制备及其吸波性能研究. 博士学位论文, 大连理工大学, 2020.
8 Shen Y, Zhang J, Pang Y, et al. Scientific Reports, 2018, 8(1), 4423.
9 Feng Q. Research on the preparation and electromagnetic wave absor-bing properties of mxene and its composites. Master's Thesis, University of Electronic Science and Technology, China, 2021 (in Chinese).
冯强. MXene及其复合材料的制备与吸波性能的研究. 硕士学位论文, 电子科技大学, 2021.
10 Cao S B. Preparation and microwave absorbing properties of 3D graphene, and 3D graphene/Ni composite. Master's Thesis, Hunan University, China, 2018 (in Chinese).
曹树彬. 三维石墨烯及其复合材料的制备与吸波性能的研究. 硕士学位论文, 湖南大学, 2018.
11 Li X. Preparation and microwave absorption properties of conductive polyaniline and its nanocomposites. Master's Thesis, Zhejiang Sci-Tech University, China, 2020 (in Chinese).
李想. 导电聚苯胺及其复合材料的制备和吸波性能研究. 硕士学位论文, 浙江理工大学, 2020.
12 Zhong X. Study of preparation and electromagnetic wave absorption pro-perties of Fe-based magnetic micro/nano particles and its composites. Master's Thesis, Beijing Institute of Technology, China, 2016 (in Chinese).
钟璇. Fe基磁性微/纳颗粒及其复合材料的制备与电磁吸波性能研究. 硕士学位论文, 北京理工大学, 2016.
13 Wang M. Preparation and microwave absorption performance of nickel zinc ferrite and its composites. Master's Thesis, Nanjing University of Aeronautics and Astronautics, China, 2015 (in Chinese).
王敏. 镍锌铁氧体及其复合材料的制备与吸波性能研究. 硕士学位论文, 南京航空航天大学, 2015.
14 Wu N N. Preparation and electromagnetic wave absorption properties of magnetic nanocomposites. Ph.D. Thesis, Shandong University, China, 2019 (in Chinese).
吴楠楠. 磁性纳米复合材料的制备及其电磁波吸收性能. 博士学位论文, 山东大学, 2019.
15 Wang Q, Bi K, Lim S. IEEE Access, 2020, 8, 175998.
16 Zhang H, Ling F, Wang H, et al. Optics Communications, 2020, 463, 125394.
17 Luo H, Cheng Y Z. Journal of Electronic Materials, 2017, 47(1), 323.
18 Cheng Y, Luo H, Chen F. Journal of Applied Physics, 2020, 127(21), 214902.
19 Huang Y, Luo J, Pu M, et al. Adv Sci (Weinh), 2019, 6(7), 1801691.
20 Chen H J, Yang X Q. In:2018 National Microwave and Millimeter Wave Conference. Chengdu, China, 2018, pp. 131 (in Chinese).
陈会杰, 杨晓庆. 2018年全国微波毫米波会议, 成都, 2018,pp. 131.
21 Khuyen B X, Hanh V T H, Tung B S, et al. Crystals, 2020, 10(5), 415.
22 Zhou Y, Shen Z, Wu J, et al. Applied Physics B, 2020, 126(3), 52.
23 Chen F, Cheng Y, Luo H. IEEE Access, 2020, 8, 82981.
24 Pang Y, Wang J, Cheng Q, et al. Applied Physics Letters, 2017, 110(10), 104103.
25 Huang X, Yang H, Shen Z, et al. Journal of Physics D, Applied Physics, 2017, 50(38), 385304.
26 Xie J, Zhu W, Rukhlenko I D, et al. Optics Express, 2018, 26(4), 5052.
27 Ren J, Yin J Y. Optical Materials Express, 2018, 8(8), 2060.
28 Li S, Shen Z, Yang H, et al. Plasmonics, 2021, 16(4), 1269.
29 Zhou Y, Shen Z, Huang X, et al. Physics Letters A, 2019, 383(23), 2739.
30 Zhang X, Yan F, Du X, et al. AIP Advances, 2020, 10(5), 055211.
31 Yoo Y J, Ju S, Park S Y, et al. Science Reports, 2015, 5, 14018.
32 Odit M, Kapitanova P, Andryieuski A, et al. Applied Physics Letters, 2016, 109(1), 011901.
33 Song Q, Zhang W, Wu P C, et al. Advanced Optical Materials, 2017, 5(8), 1601103.
34 Zhao J, Wei S, Wang C, et al. Optics Express, 2018, 26(7), 8522.
35 Zhang X, Zhang D, Fu Y, et al. IEEE Antennas and Wireless Propagation Letters, 2020, 19(5), 821.
36 Chen Y, Chen K, Zhang D, et al. Photonics Research, 2021, 9(7), 1391.
37 Pang Y, Shen Y, Li Y, et al. Journal of Applied Physics, 2018, 123(15), 155106.
38 Wu Z, Chen X, Zhang Z, et al. Applied Physics Express, 2019, 12(5), 057003.
39 Zhang J, Wu X, Liu L, et al. Opt Express, 2019, 27(18), 25595.
40 Xiong H, Yang F. Optics Express, 2020, 28(4), 5306.
41 Chen X, Wu Z, Zhang Z, et al. Physica E, Low-dimensional Systems and Nanostructures, 2020, 120, 114017.
42 Shen Y, Zhang J, Pang Y, et al. Optics Express, 2018, 26(12), 15665.
43 Rajabalipanah H, Abdolali A, Mohammadi M. Journal of Physics D, Applied Physics, 2021, 54(22), 225302.
44 Gao Z, Fan Q, Tian X, et al. Optical Materials, 2021, 112, 110793.
45 Zhang Y, Dong H, Mou N, et al. Nanoscale, 2021, 13(16), 7831.
46 Zhou Q, Yin X W, Zhang L T, et al. Science and Technology Review, 2016, 34(18), 40 (in Chinese).
周倩, 殷小玮, 张立同, 等. 科技导报, 2016, 34(18), 40.
47 Zhang Y N, Chen K A, Hao X Y, et al. Chinese Science Bulletin, 2020, 65(15), 1396 (in Chinese).
张燕妮, 陈克安, 郝夏影, 等. 科学通报, 2020, 65(15), 1396.
[1] 庄明兴, 卡盖·索音图, 付文英, 司司, 余添玉, 杨俊东, 章剑, 梁宇欣, 赵新生, 魏永生. 硼/磷掺杂电解水析氢金属催化剂的研究现状与进展[J]. 材料导报, 2023, 37(S1): 22080121-11.
[2] 许兵, 姚兴洁, 刘佳, 张旭, 杨晓彤, 郭培勋, 张新玉. 面向太阳能界面蒸发的纳米光热材料与系统设计研究[J]. 材料导报, 2023, 37(S1): 23030028-8.
[3] 杨志强, 李化建, 温家馨, 董昊良, 易忠来, 黄法礼, 王振. 高速铁路无砟轨道水泥基材料与结构的疲劳损伤及服役寿命综述[J]. 材料导报, 2023, 37(S1): 22100219-8.
[4] 沈燕, 朱航宇, 龚泳帆, 何强. 碱对硫铝酸盐水泥-粉煤灰体系水化硬化的影响[J]. 材料导报, 2023, 37(S1): 23050143-6.
[5] 陶铸, 梁燕霞, 黄光法, 江莉, 任骊, 金路, 卫国英. 粉煤灰基材料在水处理方面的应用研究进展[J]. 材料导报, 2023, 37(S1): 23010002-8.
[6] 吴伟喆, 刘阳, 张艺欣, 黄建山, 闫国威. 冻融环境下FRCC孔隙结构与力学性能研究综述[J]. 材料导报, 2023, 37(S1): 23010108-12.
[7] 杨旭, 历新宇, 周娟苹, 姜男哲. 含重金属离子废水处理技术研究进展[J]. 材料导报, 2023, 37(9): 21090197-10.
[8] 庞超明, 唐志远, 杨志远, 黄鹏. 水泥基材料中的早强剂及其作用机理综述[J]. 材料导报, 2023, 37(9): 21110247-11.
[9] 罗彪, 罗正东, 任辉启, 郭瑞奇. 速凝剂对低水胶比浆体早期水化与微观结构的影响[J]. 材料导报, 2023, 37(9): 21080253-7.
[10] 孙睿, 邬兆杰, 王栋民, 丁源, 房奎圳. 超细镁渣微粉-水泥复合胶凝材料的性能及水化机理[J]. 材料导报, 2023, 37(9): 22060197-11.
[11] 唐芮枫, 张佳乐, 王子明, 崔素萍, 王肇嘉, 兰明章. C-S-H纳米晶种及其对水泥水化硬化的促进作用综述[J]. 材料导报, 2023, 37(9): 21090259-16.
[12] 刘晓, 谢辉, 罗奇峰, 王子明, 崔素萍, 郭金波, 张冠华. 三乙醇胺对液体无碱速凝剂“促-抑”水泥早期水化的调控机理研究[J]. 材料导报, 2023, 37(9): 21100165-6.
[13] 廖宜顺, 王思纯, 廖国胜, 梅军鹏, 陈迎雪. 葡萄糖酸钠对硫铝酸盐水泥水化历程的影响[J]. 材料导报, 2023, 37(9): 21100182-6.
[14] 冒海燕, 朱淼, 朱雪峰, 郭子怡, 廖成成, 何雪梅, 宋晓蕾. 基于刚果红的高分子染料制备及pH响应变色性能[J]. 材料导报, 2023, 37(9): 21040018-6.
[15] 王洋样, 云雪艳, 周紫怡, 袁帅, 孙滔, 阿拉塔, 董同力嘎. 微相分离结构对聚乳酸薄膜性能的调控及其在巨峰葡萄保鲜中的应用[J]. 材料导报, 2023, 37(9): 21080286-10.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed