Please wait a minute...
材料导报  2023, Vol. 37 Issue (9): 21080286-10    https://doi.org/10.11896/cldb.21080286
  高分子与聚合物基复合材料 |
微相分离结构对聚乳酸薄膜性能的调控及其在巨峰葡萄保鲜中的应用
王洋样1, 云雪艳1,*, 周紫怡1, 袁帅1, 孙滔1, 阿拉塔2, 董同力嘎1,*
1 内蒙古农业大学食品科学与工程学院,呼和浩特 010018
2 内蒙古师范大学物理与电子信息学院,呼和浩特 010022
Modulation of Poly(L-lactic acid) Films Properties by Microphase Separation Structure and Its Application in Preservation of Kyoho Grapes
WANG Yangyang1, YUN Xueyan1,*, ZHOU Ziyi1, YUAN Shuai1, SUN Tao1, ALATA Hexig2, DONG Tungalag1,*
1 College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
2 College of Physics and Electronic Information, Inner Mongolia Normal University, Hohhot 010022, China
下载:  全 文 ( PDF ) ( 4510KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为改善聚乳酸(PLLA)性能并增加其在果蔬保鲜领域应用的可能性,本研究将聚三氟丙基甲基硅氧烷(PTFPMS)和聚乙二醇(PEG)分别与L-丙交酯进行开环反应制备出PLLA-PTFPMS-PLLA(PLTL)和PLLA-PEG-PLLA(PLEL)三嵌段共聚物,进一步以75∶25、50∶50、25∶75的质量比将PLTL和PLEL进行共混得到PLTL/PLEL共混薄膜。实验结果表明,PTFPMS和PEG嵌段的引入提高了PLLA的热学和力学性能,PLLA的Tg分别变为57.8 ℃和43.9 ℃,其薄膜的断裂伸长率分别达到108.7%和199.7%。将PLTL和PLEL共混成膜后,PLLA的Tg变为52.3~46.2 ℃,PLTL/PLEL共混膜的断裂伸长率可达142.5%~295.8%。在5 ℃测试环境下,PLTL和PLEL薄膜的CO2透过率分别是PLLA的2.12倍和3.51倍,O2透过率分别是PLLA的1.97倍和0.87倍,其CO2/O2透过比分别为3.3和12.2,另外20 ℃测试条件下其H2O透过率是PLLA的0.87倍和3.29倍,说明PEG能够大幅度提升CO2和H2O透过率,但对O2透过率贡献不大;而PTFPMS既能够提升CO2透过率也能提升O2透过率,但其自身的疏水性减弱了H2O透过率。两者共混后,PLTL/PLEL薄膜的CO2透过率为PLLA的2.55~3.33倍,O2透过率为PLLA的1.15~1.46倍,CO2/O2透过比达到5.3~8.8,H2O透过率为PLLA的0.92~2.66倍,并且随着测试温度的升高,PLTL/PLEL薄膜的CO2和O2透过率明显提升,说明PLTL/PLEL共混膜在保持优异气体透过性能的同时,拥有适宜生鲜果蔬包装的CO2/O2透过比。将改性后的材料及市售PE保鲜膜应用于巨峰葡萄保鲜,PLTL-PLEL50组在贮藏第10 d已达到巨峰葡萄最适宜的5%O2+8%CO2浓度,可将巨峰葡萄的货架期延长至30 d。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王洋样
云雪艳
周紫怡
袁帅
孙滔
阿拉塔
董同力嘎
关键词:  聚乳酸  柔顺性  保鲜  气体透过性  水蒸气透过性    
Abstract: To improve the performance of poly(L-lactic acid) (PLLA) and to increase its potential application in the field of fruit and vegetable preservation, in this study, polytrifluoropropyl methylsiloxane (PTFPMS) and polyethylene glycol (PEG) were used to conduct ring-opening reaction with L-lactide. PLLA-PTFPMS-PLLA (PLTL) and PLLA-PEG-PLLA (PLEL) triblock copolymers were successfully prepared. PLTL/PLEL blend films were obtained by blending PLEL with PLEL at 75∶25, 50∶50 and 25∶75. The experimental results show that PTFPMS and PEG blocks improve the flexibility and thermal properties of PLLA, Tg of PLLA was changed to 57.8 ℃ and 43.9 ℃, and the elongation at break of PLLA films reaches 108.7% and 199.7%, respectively. The Tg of PLLA was changed from 52.3 ℃ to 46.2 ℃. At 5 ℃, the CO2 transmittance of PLTL and PLEL films is 2.12 times and 3.51 times of PLLA, and the O2 transmittance is 1.97 times and 0.87 times of PLLA, respectively. Moreover, the CO2/O2 transmittance ratio of PLTL and PLEL films is 3.3 and 12.2, at 20 ℃, the H2O transmission rate was 0.87 times and 3.29 times that of PLLA. It shows that PEG can greatly improve CO2 transmittance, but has little contribution to O2 transmittance. PTFPMS can improve both CO2 and O2 transmittance. After blending, the CO2, O2 and H2O transmission amounts are 2.55—3.33 times, 1.15—1.46 times and 0.92—2.66 times of PLLA, and the CO2/O2 transmission ratio reaches 5.3—8.8. The results indicate that PLTL/PLEL blend film has a CO2/O2 transmittance ratio suitable for fresh fruit and vegetable packaging while maintaining excellent gas transmittance. The modified material and commercially available PE cling film were applied to preserve the grapes. The PLTL-PLEL50 group reached the optimum 5%O2+8%CO2 concentration for grapes on the 10th day of storage, extending the shelf life of grapes to 30 days.
Key words:  poly(L-lactic acid)    flexibility    freshness preservation    gas permeability    H2O permeability
出版日期:  2023-05-10      发布日期:  2023-05-04
ZTFLH:  TQ316  
基金资助: 国家自然科学基金(21805142)
通讯作者:  *云雪艳,2017年博士毕业于内蒙古农业大学,现为内蒙古农业大学讲师、硕士研究生导师。主要科研方向为食品保鲜包装及安全控制技术。发表学术论文16篇,其中SCI收录8篇。申请国家发明专利3项,获批2项;参编十三五规划教材1部、英文专著1部。yun_imau@163.com
董同力嘎,2007年博士毕业于东京工业大学生体分子机能工学专业。2007—2009年于东京工业大学生命理工学院作为JSPS博士后继续开展研究工作。现任内蒙古农业大学教授、食品科学与工程学学院院长、博士研究生导师。兼任中国振动工程学会包装动力学专业委员会理事、中国环境科学学会绿色包装专业委员会副主任委员、中国包装联合会包装教育委员会委员。研究方向为食品保鲜包装及安全控制技术。主持国家自然科学基金项目3项、内蒙古自然科学基金项目1项、内蒙古自治区科技创新引导奖励资金项目1项、企业委托横向课题2项以及其他纵向项目3项。主编《食品包装学》;副主编《肉品工艺学》;参编《乳及乳制品工艺学》等教材;参编“Food Packaging”(Elsevier出版社)专著。发表学术研究论文96篇,其中SCI检索51篇,EI收录9篇,申请并获得国家发明专利2项。dongtlg@163.com   
作者简介:  王洋样,2019 年 6 月毕业于内蒙古农业大学,获得学士学位。现为内蒙古农业大学农产品加工及贮藏工程专业研究生,主要研究聚乳酸基的可降解食品包装材料。
引用本文:    
王洋样, 云雪艳, 周紫怡, 袁帅, 孙滔, 阿拉塔, 董同力嘎. 微相分离结构对聚乳酸薄膜性能的调控及其在巨峰葡萄保鲜中的应用[J]. 材料导报, 2023, 37(9): 21080286-10.
WANG Yangyang, YUN Xueyan, ZHOU Ziyi, YUAN Shuai, SUN Tao, ALATA Hexig, DONG Tungalag. Modulation of Poly(L-lactic acid) Films Properties by Microphase Separation Structure and Its Application in Preservation of Kyoho Grapes. Materials Reports, 2023, 37(9): 21080286-10.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21080286  或          http://www.mater-rep.com/CN/Y2023/V37/I9/21080286
1 Gao C, Lin Q, Dong C, et al. RSC Advances, 2020, 10(15), 9037.
2 Zhang X, Ismail B B, Cheng H, et al. Carbohydrate Polymers, 2021, 273, 118616.
3 Li Z W, Zhang P, Huang Y F, et al. Northwestern Botanical Journal, 2011, 31(2), 385 (in Chinese).
李志文, 张平, 黄艳凤, 等. 西北植物学报, 2011, 31(2), 385.
4 Deng L Z, Mujumdar A S, Zhang Q, et al. Critical Reviews in Food Science and Nutrition, 2019, 59(9), 1408.
5 Kang A, Ren L, Hua C. Waste Management, 2021, 136, 36.
6 Barletta M, Gisario A, Mehrpouya M. Journal of Manufacturing Processes, 2021, 61, 473.
7 Singhvi M S, Zinjarde S. Journal of Applied Microbiology, 2019, 127(6), 1612.
8 Chen C, Tian Y, Li F L, et al. Biomacromolecules, 2020, 22(2), 374.
9 Song S X, Liang M, Wang Y, et al. Polymer Materials Science and Engineering, 2016, 32(11), 135 (in Chinese).
宋树鑫, 梁敏, 王羽, 等. 高分子材料科学与工程, 2016, 32(11), 135.
10 Auras R, Harte B, Selke S. Macromolecular Bioscience, 2004, 4(9), 835.
11 Yun X Y, Li X F, Dong T. Packaging Engineering, 2017, 38(17), 1 (in Chinese).
云雪艳, 李晓芳, 董同力嘎. 包装工程, 2017, 38(17), 1.
12 Yun X Y, Li X F, Dong T. Science of Advanced Materials, 2019, 11(10), 1488.
13 Yun X Y, Li X F, Pan P J, et al. RSC Advances, 2019, 9(22), 12354.
14 Li J, You C, Chen L, et al. Industrial and Engineering Chemistry Research, 2012, 51(37), 12081.
15 Zhu Y, Cheng J, Xu X, et al. Science of the Total Environment, 2020, 720, 137598.
16 Isfahani A P, Sadeghi M, Wakimoto K, et al. Journal of Membrane Science, 2017, 542, 143.
17 Yang Y, Si Z, Cai D, et al. Separation and Purification Technology, 2020, 235, 116144.
18 Lin Y, He D, Hu H, et al. Applied Bio Materials, 2019, 2(10), 4377.
19 Zhang X K, Poojari Y, Drechsler L E, et al. Journal of Inorganic and Organometallic Polymers and Materials, 2008, 18(2), 246.
20 Zhang L, He G, Zhao W, et al. Journal of Membrane Science, 2011, 371(1-2), 141.
21 Su T, Wang G Y, Xu X D, et al. Journal of Polymer Science Part A:Polymer Chemistry, 2006, 44(10), 3365.
22 Tavangar T, Karimi M, Rezakazemi M, et al. Chemical Engineering Journal, 2020, 385, 123787.
23 Broz M E, VanderHart D L, Washburn N R. Biomaterials, 2003, 24(23), 4181.
24 Guillen G R. Industrial and Engineering Chemistry Research, 2011, 50(7), 3798.
25 Sanders D F, Smith Z P, Guo R, et al. Polymer, 2013, 54(18), 4729.
26 Moriya A, Maruyama T, Ohmukal Y, et al. Journal of Membrane Science, 2009, 342(1-2), 307.
27 Wang D, Russell T P. Macromolecules, 2018, 51(1), 3.
28 Li H, Zhen W, Dong C, et al. Reactive and Functional Polymers, 2021, 165, 104964.
29 Zi P, Zhang C, Ju C, et al. European Journal of Pharmaceutical Sciences, 2019, 134, 233.
30 Li S, Shao C, Miao Z, et al. Green Processing and Synthesis, 2021, 10(1), 37.
31 He Z, Niu H, Zheng N, et al. Polymer Chemistry, 2019, 10(35), 4789.
32 Hameed N, Salim N V, Walsh T R, et al. Chemical Communications, 2015, 51(48), 9903.
33 Chuaponpat N, Ueda T, Ishigam A, et al. Polymers, 2020, 12(5), 1083.
34 McKeown N B, Budd P M, Msayib K J, et al. Chemistry-A European Journal, 2005, 11(9), 2610.
35 Echeverría J C, Estella J, Barbería V, et al. Journal of Non-Crystalline Solids, 2010, 356(6-8), 378.
36 Park J Y, Pau D R. Journal of Membrane Science, 1997, 125(1), 23.
37 Yun X Y, Lu H, Hu J, et al. Polymer Materials Science and Engineering, 2020, 36(2), 8(in Chinese).
云雪艳, 陆浩, 胡健, 等. 高分子材料科学与工程, 2020, 36(2), 8.
38 Semsarzadeh M A, Ghalei B. Journal of Membrane Science, 2012, 401, 97.
39 Roy S, Anantheswaran R C. Journal of Food Science, 1995, 60(6), 1254.
40 Luo J B, Wang P, Li J H, et al. Journal of Biomedical Engineering, 2006, 23(1), 125(in Chinese).
罗建斌, 王鹏, 李洁华, 等. 生物医学工程学杂志, 2006, 23(1), 125.
[1] 刘济民, 朱慧敏, 潘健, 宋力雅, 刘珊, 花亚冰, 石锐, 徐亮. 新型可生物降解的组织可黏附材料的合成与表征[J]. 材料导报, 2022, 36(3): 20120176-6.
[2] 叶小林, 许志彦, 侯泽明, 王建航, 谭芳, 张道海, 蔡晓东, 周国永, 吴中立, 宝冬梅. 聚乳酸/DOPS衍生物阻燃复合材料的非等温热降解动力学研究[J]. 材料导报, 2022, 36(19): 21090131-6.
[3] 段瑞侠, 陈金周, 刘文涛, 何素琴, 刘浩, 黄淼铭, 朱诚身. 聚乳酸基压电材料的研究和应用[J]. 材料导报, 2022, 36(10): 20080234-8.
[4] 毛龙, 谢建达, 雷永振, 范淑红, 刘跃军. 贻贝仿生构建聚乳酸多层复合薄膜及其性能[J]. 材料导报, 2021, 35(16): 16178-16183.
[5] 黄爱宾, 刘彩凤, 张晓惠. 聚乳酸共混的研究进展[J]. 材料导报, 2020, 34(Z2): 586-589.
[6] 陈康, 何啸宇, 李文豪, 吴义强, 李新功, 左迎峰. 乳酸接枝竹纤维/聚乳酸复合材料的制备与性能表征[J]. 材料导报, 2020, 34(20): 20171-20176.
[7] 赵中国, 张鑫, 程少华, 王渺, 梁攀旭, 李万顺, 贾仕奎. 高熔体强度聚乳酸的结晶和发泡性能[J]. 材料导报, 2020, 34(20): 20182-20186.
[8] 王珊珊, 赵磊, 周海瑛, 李文珠, 张文标. 次磷酸铝对竹炭/聚乳酸复合材料阻燃和力学性能的影响[J]. 材料导报, 2020, 34(14): 14214-14217.
[9] 师盟盟, 罗发亮. PLLA/TPEE/TMC-210三元复合材料的制备及性能研究[J]. 材料导报, 2020, 34(12): 12191-12195.
[10] 赵西坡, 胡欢, 熊娟, 王鑫, 余晓磊, 彭少贤. 弹性体共混改性聚乳酸(PLA)高韧性共混物研究进展[J]. 材料导报, 2019, 33(Z2): 590-598.
[11] 谢鹏飞, 陈勰, 丁峰, 张乃文, 李建波, 任杰. 缩聚法制备热固性聚乳酸及其力学性能和热稳定性研究[J]. 材料导报, 2019, 33(6): 1042-1046.
[12] 王博成, 刘桅, 涂征, 吴崇刚, 石彪, 胡涛, 龚兴厚. 苯乙烯-丙烯酸甲酯共聚物对聚乳酸/SBS共混物相容性的影响[J]. 材料导报, 2019, 33(22): 3833-3836.
[13] 余鹏, 项佩, 高金玲, 李媛. 基于相形态结构的PLA/PBS共混物微孔发泡行为[J]. 材料导报, 2019, 33(20): 3524-3530.
[14] 常悦, 陈支泽, 杨一奇. 聚乳酸-聚己内酯多嵌段立构复合物薄膜的制备及熔融稳定性[J]. 材料导报, 2019, 33(16): 2808-2812.
[15] 彭少贤,蔡小琳,胡欢,赵西坡. 环境友好型增塑剂增韧聚乳酸的最新研究进展[J]. 材料导报, 2019, 33(15): 2617-2623.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed