Please wait a minute...
材料导报  2023, Vol. 37 Issue (15): 22030228-9    https://doi.org/10.11896/cldb.22030228
  高分子与聚合物基复合材料 |
矿井新型增润促凝喷雾降尘剂的研制与抑尘性能研究
聂文1,2,*, 许长炜1,2, 彭慧天1,2, 张少波1,2
1 山东科技大学安全与环境工程学院,山东 青岛 266590
2 山东科技大学矿山灾害预防控制实验室,山东 青岛 266590
Development and Research on Dust Suppression Performance of a New Type of Spray Dust Suppressant for Increasing Moisturizing and Accelerating Coagulation in Mines
NIE Wen1,2,*, XU Changwei1,2, PENG Huitian1,2, ZHANG Shaobo1,2
1 School of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, Shandong, China
2 Laboratory of Mine Disaster Prevention and Control, Shandong University of Science and Technology, Qingdao 266590, Shandong, China
下载:  全 文 ( PDF ) ( 28097KB )     补充信息
输出:  BibTeX | EndNote (RIS)      
摘要 针对综采工作面粉尘污染严重、喷雾水对煤尘润湿捕集效果差以及传统喷雾降尘剂溶液粘稠不易雾化导致降尘效果不理想等问题,为提升综采工作面喷雾除尘效率,降低作业区域粉尘浓度,在低温条件下通过将聚多巴胺引入丙烯酰胺聚合反应体系控制其聚合程度,生成能高效雾化的降尘剂分子PDA-PAM,并用红外光谱技术研究了其官能团结构。将产物与表面活性剂、吸湿性无机盐复配,以溶液对煤样的接触角、煤尘在溶液中的沉降速度作为评价指标设计正交试验,最终确定了降尘剂溶液配方0.8%(质量分数,下同)PDA-PAM(聚多巴胺-聚丙烯酰胺)+0.05%十二烷基二甲基苄基氯化铵+0.05%NaCl。基于计算流体力学(CFD)数值模拟技术对白芦煤矿4307综采工作面1.3 m/s风流扰动下,喷雾降尘剂溶液在1—8 MPa的雾化情况进行模拟,揭示了喷雾降尘剂对喷雾雾化特性的影响规律。数值模拟结果显示,雾滴平均粒径与喷雾压力间均存在幂函数关系;相较于清水喷雾,添加所复配的喷雾降尘剂后产生的雾场雾滴平均粒径更小,分布更加均匀;在喷雾压力为8 MPa时,喷雾降尘剂溶液产生的雾场雾滴粒径在20~100 μm这一最佳粒径区间的比例达90.31%。通过增润促凝实验验证,研制的喷雾降尘剂溶液能够使煤尘迅速润湿并凝结成壳,达到增润和促凝的双重控尘效果。将降尘剂在现场进行应用,实测工作面各测点平均总尘和呼尘浓度分别降至72 mg/m3和44 mg/m3,平均总尘降尘率达到84.2%,平均呼尘降尘率达到82.7%。研制的喷雾降尘剂溶液能高效雾化产生较为理想的雾滴粒径,且对煤尘有较强的凝并包裹作用,能高效降低工作现场的粉尘污染,保障工人的职业健康和安全。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
聂文
许长炜
彭慧天
张少波
关键词:  喷雾降尘剂  雾化特性  综采工作面  雾滴分布规律  数值模拟    
Abstract: In view of the serious dust pollution of fully mechanized mining and the poor effect of spraying water on the wetting and capturing of coal dust, the large molecular weight of traditional spray dust reducing agents, the viscosity of the solution is not easy to atomize and the unsatisfactory dust reduction effect, etc., in order to improve the comprehensive mining face spray dust removal efficiency, reduce the dust concentration in the work area, under low temperature conditions, by introducing polydopamine into the acrylamide polymerization reaction system to control the degree of polymerization, generate a highly efficient atomized dust-reducing agent molecule PDA-PAM, and use infrared spectroscopy to study its functional group structure. The product is compounded with surfactants and hygroscopic inorganic salts. Orthogonal experiments are designed with the contact angle of the solution to the coal sample and the sedimentation speed of coal dust in the solution as evaluation indicators. The formula of the dust depressant solution 0.8%PDA-PAM, 0.05% dodecyl dimethyl benzyl ammonium chloride and 0.05%NaCl is finally determined. Based on CFD numerical simulation technology, under the disturbance of 1.3 m/s wind flow in Bailu Coal Mine 4307 fully mechanized mining face, the atomization of spray dust reducer solution at 1—8 MPa was simulated, revealing the influence law of spray dust reducer on spray atomization characteristics. Numerical simulation results show that there is a power function relationship between the average particle size of the droplets and the spray pressure; compared with the clean water spray, the average droplet size of the fog field produced by adding the compound spray dust suppressant is smaller and the distribution is more uniform; when the spray pressure is 8 MPa, the ratio of the droplet size of the fog field generated by spraying the dust-reducing agent solution in the optimal size range of 20—100 μm reaches 90.31%. It is verified by experiments of moisturizing and accelerating coagulation that the spray dust reducer solution developed can quickly wet coal dust and condense into shells, and can achieve the dual dust control effect of moisturizing and accelerating coagulation. The dust reducer is applied on site. Through actual measurement, the average total dust and respiratory dust concentration at each measuring point of the working face have been reduced to 72 mg/m3 and 44 mg/m3, the average total dust reduction rate has reached 84.2%, and the average respiratory dust reduction rate has reached 82.7%. The developed spray dust reducer solution can efficiently atomize to produce a relatively ideal droplet size, and has a strong condensing and wrapping effect on coal dust, which can effectively reduce dust pollution on the work site and ensure the occupational health and safety of workers.
Key words:  spray dust suppressant    atomization characteristics    fully mechanized mining face    droplet distribution law    numerical simulation
出版日期:  2023-08-10      发布日期:  2023-08-07
ZTFLH:  TD714  
基金资助: 国家自然科学基金(52174191;51874191)
通讯作者:  * 聂文,山东科技大学安全与环境工程学院教授、博士研究生导师。2007年山东科技大学安全工程系本科毕业,2010年山东科技大学安全技术及工程专业硕士研究生毕业,2013年山东科技大学安全技术及工程专业博士研究生毕业,现任山东科技大学安全与环境工程学院(安全与应急管理学院)副院长,长期从事安全科学与工程、应急管理科学与工程等的教学科研工作。国家“万人计划”青年拔尖人才、山东省杰青、泰山学者青年专家、中国高被引学者、青岛市拔尖人才,获全国煤炭五四青年奖章、中国高等学校矿业石油安全工程领域优秀青年科技人才奖、挑战杯大学生课外学术科技作品竞赛全国优秀指导教师等28项荣誉称号。目前主要从事矿井灾害预测及防治、矿井通风与粉尘控制、安全管理理论、应急管理科学与工程、环境科学与工程等领域的研究工作,以通信或第一作者发表学术论文90余篇,以第一发明人授权了24项中国、美国发明专利。niewen@sdust.edu.cn   
引用本文:    
聂文, 许长炜, 彭慧天, 张少波. 矿井新型增润促凝喷雾降尘剂的研制与抑尘性能研究[J]. 材料导报, 2023, 37(15): 22030228-9.
NIE Wen, XU Changwei, PENG Huitian, ZHANG Shaobo. Development and Research on Dust Suppression Performance of a New Type of Spray Dust Suppressant for Increasing Moisturizing and Accelerating Coagulation in Mines. Materials Reports, 2023, 37(15): 22030228-9.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22030228  或          http://www.mater-rep.com/CN/Y2023/V37/I15/22030228
1 Yuan L, Zhang N, Kan J G, et al. Journal of China University of Mining & Technology, 2018, 47(1), 1(in Chinese).
袁亮, 张农, 阚甲广, 等. 中国矿业大学学报, 2018, 47(1), 1.
2 Cheng W M, Zhou G, Chen L J, et al. Coal Science and Technology, 2020, 48(2), 1(in Chinese).
程卫民, 周刚, 陈连军, 等. 煤炭科学技术, 2020, 48(2), 1.
3 Gu D Z, Li Q S. Journal of China Coal Society, 2021, 46(3), 950(in Chinese).
顾大钊, 李全生. 煤炭学报, 2021, 46(3), 950.
4 Jin L Z, Li J P, Sun Y F. Theory of mine dust control, Science Press, China, 2009, pp.13(in Chinese).
金龙哲, 李晋平, 孙玉福. 矿井粉尘防治理论, 科学出版社, 2009, pp.13.
5 Shi X X, Jiang Z G, Sun Y F. Journal of Safety Science and Technology, 2005, 1(1), 41(in Chinese).
时训先, 蒋仲安, 褚燕燕. 中国安全生产科学技术, 2005, 1(1), 41.
6 Zhou G. Study on theory and technology of spray dust removal in fully mechanized caving face. Ph. D. Thesis. Shandong University of Science and Technology, China, 2009(in Chinese).
周刚. 综放工作面喷雾降尘理论及工艺技术研究. 博士学位论文, 山东科技大学, 2009.
7 Yuan L. Study on automatic positioning spray dust control system for fully mechanized mining face. Ph. D. Thesis. Jinan University, China, 2016(in Chinese).
袁雷. 综采面自动定位喷雾降尘控制系统研究. 博士学位论文, 济南大学, 2016.
8 Sampurna A, Joseph S, Thomas N. Safety Science, 2018, 110, 204.
9 Wang H T, Wang C, Wang D M. Powder Technology, 2017, 320, 498.
10 Tessum M W, Raynor P C. Safety and Health at Work, 2017, 8(3), 296.
11 Yang J, Liu D, Liu B J, et al. International Journal of Minerals Metallurgy and Materials, 2014, 21(3), 205.
12 Xu C H, Wang D M, Wang H T, et al. Process Safety and Environmental Protection, 2019, 121, 69.
13 Cheng S Y, Hao Y H, Xin Y L, et al. Chinese Journal of Environmental Engineering, 2013, 7(9), 3578(in Chinese).
程淑艳, 郝艳红, 辛云岭, 等. 环境工程学报, 2013, 7(9), 3578.
14 Luo R D, Lin M S, Luo Y B, et al. Journal of China Coal Society, 2016, 41(S2), 454(in Chinese).
罗瑞冬, 林木松, 罗运柏, 等. 煤炭学报, 2016, 41(S2), 454.
15 Adamczyk W P, Isaac B, Parra-Alvarez J, et al. Energy, 2018, 160, 693.
16 Banerjee S, Agarwal R. Applied Energy, 2015, 160, 552.
17 Zhang S B, Nie W, Guo C, et al. Building and Environment, 2021, 203, 108059.
18 Shakeel M R, Sanusi Y S, Mokheimer E M A. Applied Energy, 2018, 228, 68.
19 Zhang Z, Lu Y, Roskilly A P, et al. Fuel, 2019, 237, 28.
20 Ma Qingxin, Nie Wen, Yang Shibo, et al. Environmental Pollution, 2020, 264, 114717.
21 Kumar A, Kim M H. Energy, 2016, 103, 75.
22 Zhang J, Peng Y T, Liu Q Z. China Powder Science and Technology, 2017, 23(2), 20(in Chinese).
张静, 彭玉涛, 刘邱祖. 中国粉体技术, 2017, 23(2), 20.
23 Guo C, Nie W, Xu C W, et al. Journal of Cleaner Production, 2020, 276, 123632.
24 Xu C W, Nie W, Liu Z Q, et al. Energy, 2019 (182), 544.
25 Peng H T. Study on field atomization rule and efficient spray dust suppression technology in full-mechanized mining face of mine. Master's Thesis. Shandong University of Science and Technology, China, 2018(in Chinese).
彭慧天. 矿井综采工作面雾场雾化规律与高效喷雾降尘技术研究. 硕士学位论文, 山东科技大学, 2018.
[1] 姜琴, 刁珂龙, 杨谋存, 朱跃钊. 纳米流体中温热稳定性研究进展[J]. 材料导报, 2023, 37(S1): 23040330-10.
[2] 朱雪伟, 王海斗, 刘明, 朴钟宇. 等离子熔覆数值模拟研究现状[J]. 材料导报, 2023, 37(7): 21040228-9.
[3] 王群, 李晨宇, 周忠华, 曹文, 周子吉, 孙慧慧, 黄悦, 沈志奇. 化学钢化前后玻璃表面裂纹扩展的实验比较与数值模拟[J]. 材料导报, 2023, 37(5): 21050255-5.
[4] 李舒玥, 傅广, 李泓历, 彭庆国, 肖华强, 张钧星, 张泽华. 激光选区熔化增材制造吸收率的研究进展[J]. 材料导报, 2023, 37(24): 22040104-10.
[5] 方静, 祁文军, 胡国玉. 8 mm中厚板TC4钛合金TIG焊数值模拟及实验研究[J]. 材料导报, 2023, 37(22): 22030018-6.
[6] 易家俊, 左晓宝, 黎亮, 邹欲晓. 水泥水化过程的概率模型及其微结构演变的数值模拟[J]. 材料导报, 2023, 37(18): 22040014-7.
[7] 王恒星, 秦芳诚, 齐会萍, 汪扬波, 王于金. 双金属层状构件界面结合的模拟与实验研究进展[J]. 材料导报, 2023, 37(14): 21120136-12.
[8] 梁宁慧, 周侃, 兰菲, 刘新荣, 邓志云. 玄武岩-聚丙烯粗纤维混凝土管承载力试验研究[J]. 材料导报, 2023, 37(11): 21100164-8.
[9] 余国卿, 许永康, 王东亮, 牛勇, 司明达, 张茂, 龚攀, 王新云. 陶瓷颗粒增强Zr基非晶合金复合材料高温变形行为研究[J]. 材料导报, 2023, 37(1): 21110013-7.
[10] 王兆, 张新虎, 王召浩, 王冠, 惠永博, 郑伟, 丁阳, 朱丽兵, 邓勇军, 傅先刚, 恽迪, 柳文波. 基于MOOSE平台的UO2燃料性能分析[J]. 材料导报, 2022, 36(7): 21040019-7.
[11] 徐洲, 李晓延, 王小鹏, 王海东. 组合热源模型在焊接模拟中的应用现状与展望[J]. 材料导报, 2022, 36(6): 20070081-6.
[12] 肖颍杰, 石少卿, 刘盈丰, 陈首, 廖瑜. 聚脲钢板复合层抗枪弹侵彻性能研究[J]. 材料导报, 2022, 36(23): 22010187-7.
[13] 肖昌伟, 李文晓. 树脂传递模塑成型工艺复合材料孔隙表征和孔隙形成预测研究进展[J]. 材料导报, 2022, 36(23): 21100167-7.
[14] 刘宇, 张桂芳, 漆鑫, 施哲, 严鹏, 姜琦. 电磁悬浮熔炼金属合金的研究进展:应用和数值模拟[J]. 材料导报, 2022, 36(21): 20080265-8.
[15] 刘玉宝, 王举金, 杨文, 刘风琴, 李亚琼, 崔凌霄, 张洋. LaFe合金在底吹氩钢包内熔化混匀的数值模拟研究[J]. 材料导报, 2022, 36(21): 21050172-7.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed