Please wait a minute...
材料导报  2022, Vol. 36 Issue (Z1): 21090113-6    
  高分子与聚合物基复合材料 |
微生物矿化改性蒙脱土补强天然橡胶的效果
孟子毅1,2, 李静2, 蒯荣2, 雷乾杰2, 付旭东1,2, 张荣1,2, 胡圣飞1,2, 刘清亭1,2
1 湖北工业大学绿色轻工材料湖北省重点实验室,武汉 430068
2 湖北工业大学材料与化学工程学院,武汉 430068
Effect of Microbial Mineralization Modified Montmorillonite Reinforced Natural Rubber
MENG Ziyi1,2, LI Jing2, KUAI Rong2, LEI Qianjie2, FU Xudong1,2, ZHANG Rong1,2, HU Shengfei1,2, LIU Qingting1,2
1 Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan 430068, China
2 School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068, China
下载:  全 文 ( PDF ) ( 5712KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 亲水性蒙脱土在亲油性橡胶基体中因易团聚而达不到良好补强效果,采用传统化学或物理方法对其表面做亲油性改性则存在环境污染、能耗大或耗时长等诸多问题。本工作利用微生物硫酸盐还原菌的腐蚀及矿化作用对蒙脱土插层改性,制备具有插层/剥离结构的微生物蒙脱土并将其应用于橡胶补强。与原始蒙脱土相比,微生物蒙脱土的红外图谱中出现微生物胺化腐蚀的特征峰,Zeta电位降低也表明微生物对蒙脱土发生腐蚀作用,而X衍射图谱中(001)衍射峰下降至6.15°且在1~3°出现新衍射峰,是因为微生物矿化产生CaCO3晶体从而增大蒙脱土层间距。微生物蒙脱土作为补强材料加入非极性的天然橡胶,由于层间距变大的微生物蒙脱土更容易让橡胶分子链穿插其间,且附着于蒙脱土表面的生物被膜有利于改善橡胶-蒙脱土界面相容性,所制备的硫化胶拉伸强度高达20.4 MPa,改性微生物蒙脱土补强效果与单用炭黑N774补强效果接近。将该微生物蒙脱土应用于极性的氯丁橡胶可获得相似补强效果,这显示出微生物矿化蒙脱土应用于橡胶补强材料的广阔前景。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孟子毅
李静
蒯荣
雷乾杰
付旭东
张荣
胡圣飞
刘清亭
关键词:  蒙脱土  微生物  腐蚀  天然橡胶  橡胶补强    
Abstract: The hydrophilic montmorillonite in the lipophilic rubber matrix tends to aggregate and cannot achieve an ideal reinforcement effect. Using Traditional physical or chemical methods to modify the surface of montmorillonite can cause many problems such as environmental pollution, huge energy or time consuming. In this work, a novel microbial montmorillonite was prepared through both the microbial corrosion and mineralization. The microbial montmorillonite with exfoliated/intercalated lamellar structures was initially achieved by utilizing biomineralization of sulfate-reducing bacteria and then applied to the reinforcement of rubber compounds. Compared with the pristine montmorillonite, the microbial montmorillonite had characteristic peaks of amination corrosion of microorganism in FTIR spectra and the decrease of the zeta potential, showing the effect of microbial corrosion; the (001) diffraction peaks in X-ray spectra dropped to 6.15° while new diffraction peaks appeared at 1—3°, indicating that the microbial mineralization generated CaCO3 crystals which expanded the distance between montmorillonite layers. When the microbial mont-morillonite was added into the natural rubber, the tensile strength of the compound achieved 20.4 MPa, which was almost the same as the rei-nforcement effect of carbon black N774, attributing to the enlarged interlayer space allowing the easy penetration of rubber chains and the surface-attached biofilms acting as the compatibilizer. Similar results were also obtained from microbial corrosion reinforcing the polar neoprene rubber, showing the good application prospects of microbial mineralized montmorillonite as reinforcing fillers in rubber industry.
Key words:  montmorillonite    microorganism    corrosion    natural rubber    reinforcing rubber
出版日期:  2022-06-05      发布日期:  2022-06-08
ZTFLH:  TQ041+.8  
基金资助: 绿色轻工材料湖北省重点实验室(201906A07;202107A05)
通讯作者:  liuqt@hbut.edu.cn   
作者简介:  孟子毅,2019年9月至2022年6月于湖北工业大学材料与化学工程学院硕士研究生在读,主要研究领域为无机矿物材料改性、超弹性体高性能化、质子交换膜燃料电池。
刘清亭,湖北工业大学材料与化学工程学院,副教授。2010年12月毕业于英国拉夫堡大学,材料学博士学位。2013年于湖北工业大学工作至今,主要从事高分子材料成型加工方向的研究与教学工作。目前在国内外学术期刊发表文章70余篇。
引用本文:    
孟子毅, 李静, 蒯荣, 雷乾杰, 付旭东, 张荣, 胡圣飞, 刘清亭. 微生物矿化改性蒙脱土补强天然橡胶的效果[J]. 材料导报, 2022, 36(Z1): 21090113-6.
MENG Ziyi, LI Jing, KUAI Rong, LEI Qianjie, FU Xudong, ZHANG Rong, HU Shengfei, LIU Qingting. Effect of Microbial Mineralization Modified Montmorillonite Reinforced Natural Rubber. Materials Reports, 2022, 36(Z1): 21090113-6.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2022/V36/IZ1/21090113
1 Kelly R G. Nature, 1952, 4339, 1130.
2 Bhatti U H, Kazmi W W, Muhammad H A, et al. Green Chemistry, 2020, 22(19), 6328.
3 Xu T, Li K, Wang Y, et al. Materials Chemistry and Physics, 2019, 231, 357.
4 Abdel-Karim A, El-Naggar M E, Radwan E K, et al. Chemical Enginee-ring Journal, 2021, 405, 126964.
5 Bhattacharyya K G, Gupta S S. Advances in Colloid Interface and Interface Science, 2008, 140(2), 114.
6 Bee S L, Abdullah M A A, Bee S T, et al. Progress in Polymer Science, 2018, 85, 57.
7 Ivanoska-Dacikj A, Bogoeva-Gaceva G, Valic' S, et al. Applied Clay Science, 2017, 136, 192.
8 刘仁杰, 李三喜, 王松, 等. 材料导报, 2020, 34(Z1), 249.
9 Usha D K S, Ponnamma D, Causin V, et al. Applied Clay Science, 2015, 114, 568.
10 Gao W, Guo J. Composites Science and Technology, 2017, 139, 26.
11 Dufrene Y F. Trends in Microbiology, 2015, 23(6), 376.
12 Wang J, Li G, Yin H, et al. Environmental Research, 2020, 185, 109451.
13 Flemming H C, Wingender J, Szewzyk U, et al. Nature Review Microbio-logy, 2016, 14(9), 563.
14 King R A, Miller J D A. Nature, 1971, 233, 491.
15 Liu Y, Wang J, Peng Z, et al. Materials Letters, 2019, 246, 32.
16 Meng Z, Liu Y, Xiong Y, et al. Micro & Nano Letters, 2021, 16(12), 610.
17 Yang W, Zaoui A. Physica A: Statistical Mechanics and Its Applications, 2016, 464, 191.
18 Hu L, Wang H, Xu P, et al. Water Research, 2021, 190, 116753.
19 Shephard J J, Savory D M, Bremer P J, et al. Langmuir, 2010, 26(11), 8659.
20 Xiao R, Zheng Y. Biotechnology Advances, 2016, 34(7), 1225.
21 Rong X, Zhao G, Fein J B, et al. Journal of Hazard Materials, 2019, 365, 245.
22 Lu C, Chen X. Nano Letters, 2020, 20(3), 1907.
23 Peng K, Wang H, Gao H, et al. Chemical Engineering Journal, 2020, 393, 124704.
24 龙森. Zr/Ti 柱撑蒙脱石的制备及对硝基苯的吸附研究. 硕士学位论文, 贵州大学, 2018.
25 仇付国, 许俊挺, 李林彬, 等. 水处理技术, 2018, 44(4), 36.
26 Neaman M P A, Villieras F. Applied Clay Science, 2003, 22, 153.
27 Zhu S W, Ma Y, Ma L, et al. Journal of Thermal Analysis and Calorimetry, 2012, 109, 301.
28 张增志, 刘建均, 张春卫. 中国材料进展, 2010, 29(4), 49.
29 杨科,王锦成,郑晓昱. 上海工程技术大学学报, 2011, 25(1), 65.
30 Li X, Lv Y, Ma B, et al. Arabian Journal of Chemistry, 2017, 10, S2534.
31 Dragos A, Kovacs A T. Trends Microbiol, 2017, 25(4), 257.
32 Bowen W H, Burne R A, Wu H, et al. Trends Microbiol, 2018, 26(3), 229.
33 Karatan E, Watnick P. Microbiology and Molecular Biology Reviews, 2009, 73(2), 310.
34 Sim M S, Ogata H, Lubitz W, et al. Nature Communication, 2019, 10(1), 44.
35 Nealson K H, Belz A, McKee B. Antonie Van Leeuwenhoek, 2002, 81(1-4), 215.
36 Liu D, Dong H, Bishop M E, et al. Geobiology, 2012, 10(2), 150.
37 Kwon M J, O'Loughlin E J, Boyanov M I, et al. PLOS ONE, 2016, 11(1), e0146689.
38 Badziong W, Ditter B, Thauer R K. Archives of Microbiology, 1979, 123, 301.
39 Wildan M W, Mohd Ishak Z A. International Journal of Polymer Science, 2013, 2013, 1.
40 Shah K J, Shukla A D, Shah D O, et al. Polymer, 2016, 97, 525.
41 Yang S, Liang P, Peng X, et al. Chemical Engineering Journal, 2018, 354, 849.
42 李再峰, 罗明艳, 蒋玉湘, 等. 高分子材料科学与工程, 2017, 33(3), 1.
43 徐云山, 曾召田, 吕海波. 岩土力学, 2019, 40(11), 4324.
[1] 张书弟, 何欢欢, 许宇恒, 徐阳. AZ91D镁合金锰系磷酸盐转化膜的研究:磷化液各组分及含量对耐蚀性能的影响[J]. 材料导报, 2022, 36(Z1): 22010229-6.
[2] 胡家富, 谢春晓, 陶平均. 结构状态对全金属Fe基非晶合金腐蚀性能的影响[J]. 材料导报, 2022, 36(Z1): 21120217-5.
[3] 全琪炜, 刘向兵, 徐超亮, 张晏玮, 李远飞, 钱王洁, 贾文清, 吴奕初, 赵文增. 辐照后锆合金腐蚀与第二相非晶化研究概况[J]. 材料导报, 2022, 36(Z1): 21010255-6.
[4] 程培峰, 杨宗昊, 张展铭, 徐进. 热老化下纳米蒙脱土/SBS复合改性沥青愈合性能及微观机制分析[J]. 材料导报, 2022, 36(9): 21020100-6.
[5] 马良义, 台鹏飞, 王志光, 庞立龙, 申铁龙, 姚存峰, 李靖. FeCrAl合金的液态LBE/Pb腐蚀研究进展[J]. 材料导报, 2022, 36(7): 20100178-6.
[6] 张仲, 吕晓仁, 于鹤龙, 徐滨士. 智能自修复材料研究进展[J]. 材料导报, 2022, 36(7): 20110101-8.
[7] 张路, 牛荻涛, 文波, 张永利, 陈昊. 改性珊瑚骨料混凝土中钢筋的腐蚀行为[J]. 材料导报, 2022, 36(6): 20110005-7.
[8] 王付胜, 王汉森, 何鹏, 胡隆伟, 陈亚军. 磁控溅射和电镀方法制备纯银镀层耐蚀性能分析[J]. 材料导报, 2022, 36(6): 20120254-6.
[9] 张晓光, 时海军, 刘杰, 党漭, 何燕. 碳纳米管对膨胀阻燃天然橡胶的燃烧和力学性能的影响[J]. 材料导报, 2022, 36(5): 21010074-6.
[10] 何国宁, 蒋波, 何博, 胡学文, 刘雅政. 集装箱用高强度耐候钢的开发及研究现状[J]. 材料导报, 2022, 36(4): 20090318-9.
[11] 胡连军, 刘建军, 潘国峰, 曹静伟, 夏荣阳. 钴化学机械抛光的研究进展[J]. 材料导报, 2022, 36(4): 20090178-10.
[12] 杜娟, 李芳, 宋海鹏, 魏子明, 李香云. 金属表面复合防腐膜的制备及机理研究进展[J]. 材料导报, 2022, 36(3): 20060287-8.
[13] 姚红蕊, 尹旭, 王娜, 齐舵, 姜岩. 二维纳米材料在金属防腐领域的应用研究进展[J]. 材料导报, 2022, 36(10): 20080261-9.
[14] 冯震, 邢保英, 何晓聪, 曾凯, 余康. 盐性环境下铝合金自冲铆接头的疲劳特性及寿命预测[J]. 材料导报, 2022, 36(1): 20100065-5.
[15] 朱烨森, 刘梁, 徐云泽, 王晓娜, 刘刚, 黄一. 溶液pH和温度对X65管线钢焊缝非均匀腐蚀的影响[J]. 材料导报, 2022, 36(1): 20090152-7.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed