Please wait a minute...
材料导报  2022, Vol. 36 Issue (Z1): 21090072-6    
  无机非金属及其复合材料 |
NaCl型过渡金属碳化物稳定性及力学性质的第一性原理计算
温希平1, 唐帅1, 彭庆2, 张宪法1, 李林鲜1, 刘振宇1, 王国栋1
1 东北大学轧制及连轧自动化国家重点实验室,沈阳 110819
2 法赫德国王石油矿产大学物理系,沙特阿拉伯达兰 31261
First-principles Calculations on the Stability and Mechanical Properties of NaCl-type Transition Metal Carbides
WEN Xiping1, TANG Shuai1, PENG Qing2, ZHANG Xianfa1, LI Linxian1, LIU Zhenyu1, WANG Guodong1
1 State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819, China
2 Department of Physics, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
下载:  全 文 ( PDF ) ( 6631KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用基于密度泛函理论的第一性原理赝势平面波方法,对比研究了六种NaCl型过渡金属碳化物MC(M=Ti, Zr, V, Nb, Cr, Mo)的结构、力学与动力学稳定性。基于PBE交换关联泛函的赝势,对NaCl型MC进行了结构优化,计算了不同碳化物的形成能和结合能,结果表明ZrC的晶体结构最稳定,MoC最不稳定。比较研究了六种过渡金属碳化物的弹性常数、弹性模量、硬度、脆韧性等力学性质,结果表明MC均具有力学稳定性。在六种MC中,只有MoC的声子谱有虚频,说明MoC动力学不稳定。通过差分电荷密度和态密度,对MC的电子性质和成键行为进行了讨论。本工作计算结果与实验数据和前人理论计算结果基本吻合。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
温希平
唐帅
彭庆
张宪法
李林鲜
刘振宇
王国栋
关键词:  第一性原理  NaCl型碳化物  稳定性  力学性质  声子谱    
Abstract: Based on the first-principles calculation within the frame of density functional theory, the stability of the structure, mechanics and dynamics of six types of NaCl-type transition metal carbides MC (M=Ti, Zr, V, Nb, Cr, Mo) were calculated. The NaCl cubic structure of MC was optimized, and the formation and binding energies of different carbides were calculated. The result shows that ZrC has the highest stability while MoC has the lowest stability. The mechanical properties of transition metal carbides, such as elastic constant, elastic modulus, hardness, brittleness and toughness, were comparatively studied, and the results show that all the six carbides are mechanically stable. The phonon spectrum of MoC has an imaginary frequency, indicating that MoC is dynamically instable in rocksalt struture. The electronic properties and bonding behavior of MC were discussed through differential charge density map and bader charge analysis. The calculation results in this paper are consistent with the experimental and previous theoretical calculation results.
Key words:  first-principles    NaCl-type carbides    stability    mechanical property    phonon spectra
出版日期:  2022-06-05      发布日期:  2022-06-08
ZTFLH:  TG148  
基金资助: 国家自然科学基金项目(51774083;51774082
通讯作者:  tangshuai@ral.neu.edu.cn   
作者简介:  温希平,2019年7月毕业于哈尔滨理工大学,获得本科学士学位。2019年9月入学东北大学攻读材料科学与工程硕士学位。主要研究方向为金属材料的第一性原理计算。
唐帅,2004年东北大学冶金工程专业本科毕业,2011年博士毕业,现为东北大学副教授、硕士研究生导师。获得省部级科技进步奖5项,其中1等奖3项。授权发明专利5项,结合科研在国内外学术刊物上发表SCI论文80余篇,发表学术著作1部。
引用本文:    
温希平, 唐帅, 彭庆, 张宪法, 李林鲜, 刘振宇, 王国栋. NaCl型过渡金属碳化物稳定性及力学性质的第一性原理计算[J]. 材料导报, 2022, 36(Z1): 21090072-6.
WEN Xiping, TANG Shuai, PENG Qing, ZHANG Xianfa, LI Linxian, LIU Zhenyu, WANG Guodong. First-principles Calculations on the Stability and Mechanical Properties of NaCl-type Transition Metal Carbides. Materials Reports, 2022, 36(Z1): 21090072-6.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2022/V36/IZ1/21090072
1 Aizawa T, Souda R, Otani S, et al. Physical Review Letters, 1990, 64(7), 768.
2 Yang J, Ye Z, Huang J, et al. Applied Surface Science, 2018, 462, 55.
3 Yang J, Huang J. Journal of Alloys and Compounds, 2016, 689, 874.
4 李永亮. 工程科学学报, 2016, 38(8), 1108.
5 Jun H J, Kang K B, Park C G. Scripta Materialia, 2003, 49(11), 1081.
6 Kobayashi Y, Takahashi J, Kawakami K. Scripta Materialia, 2012, 67(10), 854.
7 Funakawa Y, Shiozaki T, Tomita K, et al. ISIJ International, 2004, 44(11), 1945.
8 Wu H, Huang S, Zhao C, et al. Intermetallics, 2020, 127, 106983.
9 Lee D, Lee K, Lee S. Surface and Coatings Technology, 2006, 201(3-4), 1296.
10 Ding R, Wang H, Jiang Y, et al. Journal of Alloys and Compounds, 2019, 805, 1025.
11 An Q, Wang J, Liu Y, et al. Intermetallics, 2019, 110, 106471.
12 Li H, Zhang L, Zeng Q, et al. Solid State Communications, 2011, 151(8), 602.
13 Gautam G S, Kumar K C H. Journal of Alloys and Compounds, 2014, 587, 380.
14 Liu H, Zhu J, Liu Y, et al. Materials Letters, 2008, 62(17-18), 3084.
15 Krasnenko V, Brik M G. Solid State Sciences, 2012, 14(10), 1431.
16 Gale S J, Pettifor D G. Solid State Communications, 1977, 24(2), 175.
17 Savrasov S Y. Physical Review B, 1996, 54(23), 16470.
18 Kressse G J H. Physical Review B, 1992, 47(1), 558.
19 Kressse G J H. Physical Review B, 1993, 49(20), 14251.
20 Blöchl P E. Physical Review B, 1994, 50(24), 17953.
21 Perdew J P, Wang Y. Physical Review B, 1992, 45(23), 13244.
22 Burke K E M. Physical Review Letters, 1996, 77(18), 3865.
23 Perdew J P, Burke K. Physical Review Letters, 1998, 80(4), 891.
24 Beilin Y, Tongqi W, Manh C N, et al. Acta Materialia, 2019, 170, 15.
25 Toth L E. Transition metal carbides and nitrides, Academic Press, USA, 1967, pp. 80.
26 Gale W F, Totemeier T C. Smithells metals reference book (eighth edition), Elsevier Butterworth-Heinema, USA, 2004, pp. 6.
27 Dan H, Wei Z. Physica B: Condensed Matter, 2019, 558, 100.
28 Nartowski A. Journal of Materials Chemistry, 1999, 9, 1275.
29 Dan H. Physical Review B, 2010, 82, 195410.
30 王坚. 北京科技大学学报, 1992, 14(4), 478.
31 Park N, Choi J, Cha P, et al. Journal of Physical Chemistry C, 2012, 117(1), 187.
32 Willens R. Physical Review, 1967, 159(2), 327.
33 Jang J H, Lee C, Heo Y, et al. Acta Materialia, 2012, 60(1), 208.
34 Lowell C E, Williams W S. Review of Scientific Instruments, 1961, 32(10), 1120.
35 Hugosson H W. Physical Review B, 2001, 63, 134108.
36 Wu L, Wang Y, Yan Z, et al. Journal of Alloys and Compounds, 2013, 561, 220.
37 Fernandez G A, Haglund J, Grimvall G. Physical Review B, 1992, 45(20), 11557.
38 Xing H, Dong A, Huang J, et al. Journal of Materials Science & Techno-logy, 2018, 34(4), 620.
39 Hill R. Proceedings of the Physical Society, Section A, 1952, 65(5), 349.
40 Edstrom D. Acta Materialia, 2017, 144, 376.
41 Chang R, Graham L J. Journal of Applied Physics, 1966, 37(10), 3778.
42 Wang X, Xu C, Hu S, et al. Journal of Nuclear Materials, 2019, 521, 146.
43 Kim J, Kang S. Journal of Alloys and Compounds, 2012, 540, 94.
44 Hannink R H J, Murray M J. Journal of Materials Science, 1974, 9(2), 223.
45 Changchun Z. Applied Surface Science, 2018, 469(1), 713.
46 Brenton R F, Saunders C R, Kempter C P. Journal of the Less Common Metals, 1969, 19(3), 273.
47 Woydt M, Huang S, Vleugels J, et al. International Journal of Refractory Metals and Hard Materials, 2018, 72, 380.
48 Kavitha M, Sudha P G. Materials Chemistry and Physics, 2016, 169, 71.
49 Chen X, Niu H, Li D, et al. Intermetallics, 2011, 19(9), 1275.
50 Tian Y, Xu B, Zhao Z. International Journal of Refractory Metals and Hard Materials, 2012, 33, 93.
51 Liu B X, Cheng X Y. Journal of Physics: Condensed Matter, 1992, 4(16), L265.
[1] 王伟, 郭鸽鸽, 丁士杰, 程鹏, 高原, 王快社. 钛合金表面抗氧化玻璃涂层研究进展[J]. 材料导报, 2022, 36(Z1): 21110265-8.
[2] 徐良玉, 黄福祥, 龙敏, 邓鸿元, 陈剑. 过渡金属元素(X=Cr, Mn, Co, Ni, Zn, Zr, Nb, Ta)掺杂立方BaTiO3的电子结构及光学性质的第一性原理研究[J]. 材料导报, 2022, 36(Z1): 21090275-5.
[3] 贾慧灵, 于海滨, 吴锦绣, 谭心, 王峰, 孙士阳. Al、Cr、Fe掺杂对KDP(001)晶面力学性能影响的第一性原理研究[J]. 材料导报, 2022, 36(Z1): 22020116-6.
[4] 杨喜臻, 宋原吉, 于思荣, 王康, 王珺. 不锈钢基超疏水表面的研究现状及发展趋势[J]. 材料导报, 2022, 36(Z1): 21120203-9.
[5] 卢学峰, 王宽, 崔志红. 掺杂(硅、锗、锡)单壁碳纳米管的第一性原理研究[J]. 材料导报, 2022, 36(9): 20120188-5.
[6] 杨智勇, 臧家俊, 韩超, 李卫京, 李志强. SiCp/A356材料MAO膜与合成材料摩擦副的摩擦稳定性研究[J]. 材料导报, 2022, 36(9): 21030164-8.
[7] 高梦锞, 魏世忠, 吴巧合, 袁智康, 熊美. (Fe,Cr)7C3/MoC界面电子特性的第一性原理研究[J]. 材料导报, 2022, 36(9): 21020149-6.
[8] 郑棋文, 范同祥. 液/固晶面润湿性实验与模拟研究方法[J]. 材料导报, 2022, 36(9): 21010025-12.
[9] 肖美霞, 冷浩, 姚婷珍, 王磊, 何成. 电场调控范德华异质薄膜能隙的第一性原理研究:单层SiC沉积在表面氢化的BN薄膜上[J]. 材料导报, 2022, 36(8): 20080062-6.
[10] 曾奕瑾, 宗朔通. 第一性原理在钙钛矿中的应用研究进展[J]. 材料导报, 2022, 36(8): 20080229-6.
[11] 王岚, 罗学东, 张琪, 周晓东, 李超. 温拌胶粉改性沥青-集料粘附性及其体系水稳定性分析[J]. 材料导报, 2022, 36(8): 21010186-4.
[12] 范海峰, 郭志光. 仿生超滑表面的设计与制备研究进展[J]. 材料导报, 2022, 36(7): 21110226-21.
[13] 楚英杰, 王爱国, 孙道胜, 刘开伟, 马瑞, 吴修胜, 郝发军. 骨料特性影响混凝土体积稳定性的研究进展[J]. 材料导报, 2022, 36(5): 20110088-10.
[14] 张晓光, 时海军, 刘杰, 党漭, 何燕. 碳纳米管对膨胀阻燃天然橡胶的燃烧和力学性能的影响[J]. 材料导报, 2022, 36(5): 21010074-6.
[15] 姚庆达, 梁永贤, 王小卓, 温会涛, 周华龙, 但卫华. GO/CS的结构、性能及其在水处理中的应用研究进展[J]. 材料导报, 2022, 36(4): 20110041-13.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed