Please wait a minute...
材料导报  2022, Vol. 36 Issue (16): 21120124-7    https://doi.org/10.11896/cldb.21120124
  低碳生态路面材料 |
多种湿法橡胶改性沥青的综合性能评价与改性机理研究
姚 震1, 张凌波2, 梁鹏飞1, 王仕峰3, 颜川奇4,5, *
1 山东省路桥集团有限公司, 济南 250022
2 四川省公路规划勘察设计研究院有限公司, 成都 611130
3 上海交通大学化学化工学院, 上海 200240
4 西南交通大学土木工程学院, 成都 610031
5 道路工程四川省重点实验室, 成都 610031
Comprehensive Performance Evaluation and Modification Mechanism of Various Wet Rubber Modified Asphalt
YAO Zhen1, ZHANG Lingbo2, LIANG Pengfei1, WANG Shifeng3, YAN Chuanqi4,5,*
1 Shandong Road and Bridge Group Co., Ltd., Jinan 250022, China
2 Sichuan Highway Planning, Survey, Design and Research Institute Co.,Ltd., Chengdu 611130, China
3 School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
4 School of Civil Engineering, Southwest Jiaotong University, Chengdu 610031, China
5 Highway Engineering Key Laboratory of Sichuan Province, Chengdu 610031, China
下载:  全 文 ( PDF ) ( 7184KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本工作拟对普通橡胶沥青、Terminal Blend(TB)橡胶沥青和脱硫橡胶沥青三种橡胶沥青的高温抗车辙、中温抗疲劳、低温抗裂以及流动施工性能进行综合评价,并从化学官能团和流变特性角度研究其改性机理。采用车辙因子、零剪切粘度、不可恢复蠕变柔量等指标,从增粘和增弹两个角度对沥青的高温性能进行评价;采用时间扫描试验和线性振幅扫描试验对沥青的中温抗疲劳性能进行评价;采用低温弯曲流变仪和135 ℃布氏粘度对沥青的低温抗裂性能与施工和易性进行评价;最后,基于模量-温度扫描试验、改进的Arrhenius方程拟合和红外光谱试验,从流变和化学角度对不同橡胶沥青的改性机理进行了研究。研究表明:普通橡胶沥青中的橡胶分子团聚最明显,弹性与力学性能最优,但粘度也最大,普通橡胶沥青在高温下展现出明显的橡胶态平台区和非牛顿流体行为。TB橡胶沥青中的橡胶颗粒降解度最高,橡胶分子与沥青分子完全混溶,粘度接近基质沥青,低温性能优异。脱硫橡胶沥青所采用的胶粉降解程度介于两者之间,改性效果较为均衡,是具有前景的废旧轮胎固废回收利用手段。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
姚 震
张凌波
梁鹏飞
王仕峰
颜川奇
关键词:  道路工程  橡胶沥青  TB橡胶沥青  脱硫橡胶沥青  流变性能  红外光谱    
Abstract: This work aimed to comprehensively evaluate the high-temperature anti rutting, medium-temperature anti fatigue, low-temperature anti cracking and flow-construction performances of these three kinds of rubber modified asphalts, conventional crumb rubber modified asphalt (CRMA), Terminal Blend rubber asphalt (TBRA) and desulfurized rubber asphalt (DRA), and discussed their modification mechanism from the perspective of chemical functional groups and rheological properties. Using rutting factor, zero-shear viscosity and irrecoverable compliance, the high-tempe-rature performance of asphalts was evaluated from the perspectives of viscosity and elasticity; the time sweep test and linear amplitude sweep test were conducted to evaluate the fatigue resistance of asphalts at medium temperature; the low-temperature bending rheometer test and 135 ℃ Brookfield viscosity test were used to evaluate the low-temperature crack resistance and construction workability of asphalts; finally, based on the modulus-temperature sweep test, Arrhenius model fitting and infrared spectroscopy test, the modification mechanism of different rubber asphalts was studied from the perspective of rheology and chemistry. The results show that the rubber molecules in CRMA have the most obvious agglo-meration, which translates to the best elasticity and mechanical properties, but also the largest viscosity. CRMA exhibits an obvious rubbery platform and non-Newtonian fluid behavior at high temperatures. The rubber particles in TBRA have the highest degradation rate, the rubber molecules are completely miscible with the asphalt molecules, and thus the viscosity is close to that of the base asphalt. The degree of degradation of the DRA is between the two, and the modification effect is more balanced. DRA is a promising means of recycling solid waste of waste tires.
Key words:  road engineering    conventional crumb rubber modified asphalt    Terminal Blend rubber asphalt    desulfurized rubber asphalt    rheology    FTIR
出版日期:  2022-08-25      发布日期:  2022-08-29
ZTFLH:  U414.1  
基金资助: 国家自然科学基金(52008353;51908426);中国博士后科学基金(BX20190240;2019M660097);四川省青年科技创新研究团队(2021JDTD0023;2022JDTD0015);成都科技创新研发项目(2021-YF05-01175-SN)
通讯作者:  *Ycq@swjtu.edu.cn   
作者简介:  姚震,山东省路桥集团有限公司市政工程公司副总经理、高级工程师,2006年7月于山东交通学院获得工学学士学位。主要从事道路施工的研究工作。颜川奇,西南交通大学副教授、硕士研究生导师。2014年7月本科毕业于东南大学道路与桥梁专业,2020年7月在同济大学道路与机场工程专业取得博士学位,期间获得公派联合培养博士研究生资格,在威斯康星大学麦迪逊分校开展学习与研究(导师 Hussain Bahia)。主要从事高性能改性沥青材料表征与研发,以第一作者或通讯作者身份发表SCI收录论文20余篇。
引用本文:    
姚 震, 张凌波, 梁鹏飞, 王仕峰, 颜川奇. 多种湿法橡胶改性沥青的综合性能评价与改性机理研究[J]. 材料导报, 2022, 36(16): 21120124-7.
YAO Zhen, ZHANG Lingbo, LIANG Pengfei, WANG Shifeng, YAN Chuanqi. Comprehensive Performance Evaluation and Modification Mechanism of Various Wet Rubber Modified Asphalt. Materials Reports, 2022, 36(16): 21120124-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21120124  或          http://www.mater-rep.com/CN/Y2022/V36/I16/21120124
1 Dong R K, Liang W B, Tang N P, et al. China Journal of Highway and Transport, 2019(4), 21(in Chinese).
董瑞琨,梁文兵,唐乃膨,等. 中国公路学报, 2019(4), 21.
2 Shu X, Huang B. Construction and Building Materials, 2014, 67, 217.
3 Lo Presti D, Airey G. Road Materials and Pavement Design, 2013, 14(4), 888.
4 Tan Y Q, Fu Y K, Ji L, et al. Journal of Harbin Institute of Technology, 2016, 48(3), 66(in Chinese).
谭忆秋,符永康,纪伦,等. 哈尔滨工业大学学报, 2016, 48(3), 66.
5 Huang M, Wang X, Huang W D, China Journal of Highway and Transport, 2013, 26(4), 16(in Chinese).
黄明,汪翔,黄卫东. 中国公路学报, 2013, 26(4), 16.
6 He L P. Research on viscoelastic properties and high temperature performance of rubber asphalt based on DMA method. Ph.D. Thesis, Chang'an University, China, 2014(in Chinese).
何立平. 基于DMA方法的橡胶沥青粘弹特性和高温性能研究. 博士学位论文, 长安大学, 2014.
7 Wang H, Apostolidis P, Zhu J, et al. International Journal of Pavement Engineering, 2021, 22 (14), 1785.
8 Ghavibazoo A, Abdelrahman M, Ragab M. Road Materials and Pavement Design, 2016, 17(4), 906.
9 Han L, Zheng M, Wang C. Construction and Building Materials, 2016, 128, 399.
10 Attia M, Abdelrahman M. International Journal of Pavement Enginee-ring, 2009, 10(6), 423.
11 Lin P, Huang W, Tang N, et al. Construction and Building Materials, 2017, 141, 171.
12 Ibrahim M R, Katman H Y, Karim M R, et al. Advances in Materials Science and Engineering, 2013(2013),1.
13 Lin P, Huang W, Tang N, et al. Construction and Building Materials, 2018, 169, 543.
14 Tang N, Dong R. Construction and Building Materials, 2020, 250, 118858.
15 Kang A H. Journal of Highway and Transportation Research and Development, 2008, 25(7), 12(in Chinese).
康爱红. 公路交通科技, 2008, 25(7), 12.
16 Xiao P. Journal of Jiangsu University (Natural Science Edition), 2007, 28(6), 491(in Chinese).
肖鹏. 江苏大学学报 (自然科学版), 2007, 28(6), 491.
17 Zhang Y T, Xie Y L, Song P, et al. Polymeric Materials Science and Engineering, 2020, 36(4),167(in Chinese).
张雨昕,谢艳玲,宋攀,等. 高分子材料科学与工程,2020,36(4),167.
18 Yang Y W, Yuan H, Ma T. Journal of Highway and Transportation Research and Development, 2012, 29(2), 35(in Chinese).
杨毅文,袁浩,马涛. 公路交通科技, 2012, 29(2), 35.
19 Tang N, Huang W, Xiao F. Construction and Building Materials, 2016, 123, 847.
20 Sybilski D. Transportation Research Record, 1996, 1535(1), 15.
21 Huang W, Tang N. Construction & Building Materials,2015, 93, 514.
22 Bahia H U, Hanson D I, Zeng M, et al. Characterization of modified asphalt binders in superpave mix design. No. Project 9-10 FY96. USA, 2001.
23 Chen H, Zhang Y, Bahia H U. Construction and Building Materials, 2017, 266, 483.
24 Jin R G, Hua Y Q. Polymer physics, Chemical Industry Press, China,2007(in Chinese).
金日光,华幼卿. 高分子物理, 化学工业出版社, 2007.
25 Huang W D, Lyu Q, Chai C C. Journal of Building Materials, 2016,19(1),111(in Chinese).
黄卫东,吕泉,柴冲冲. 建筑材料学报, 2016,19(1),111.
26 Hossain Z, Ghosh D, Zaman M, et al. Journal of Testing and Evaluation, 2016, 44(1), 507.
27 Bonnetti K S, Nam K, Bahia H U. Transportation Research Record,2002, 1810(1), 33.
28 Yin Y M, Zhang X N, Zhou G L. Journal of South China University of Technology (Natural Science Edition), 2010(10), 93(in Chinese).
尹应梅,张肖宁,邹桂莲. 华南理工大学学报 (自然科学版), 2010(10), 93.
29 He X L, Wang J F, Wang F, et al. China Test, 2019(9), 11(in Chinese).
何欣龙,王继芬,王飞,等. 中国测试, 2019(9), 11.
30 Yan C, Xiao F, Huang W, et al. Polymer Testing, 2018, 70, 289.
[1] 孙思威, 金鑫, 邓昌宁, 郭乃胜, 余耀威. 基于分形理论的蓄能自发光道路标线涂料性能预测模型研究[J]. 材料导报, 2022, 36(Z1): 20110256-7.
[2] 程培峰, 杨宗昊, 张展铭, 徐进. 热老化下纳米蒙脱土/SBS复合改性沥青愈合性能及微观机制分析[J]. 材料导报, 2022, 36(9): 21020100-6.
[3] 张永军, 罗文波. 重复荷载下玄武岩纤维沥青混合料的永久变形及其分数阶黏弹塑性模型[J]. 材料导报, 2022, 36(9): 21020108-7.
[4] 徐光霁, 范剑伟, 马涛, 朱雅婧, 李树仁. 高掺量废胎胶粉改性沥青性能研究[J]. 材料导报, 2022, 36(16): 21120239-8.
[5] 周雯怡, 易军艳, 陈卓, 冯德成. 泡沫沥青冷再生混合料界面黏附性提升原理与路用性能验证[J]. 材料导报, 2022, 36(16): 21110120-9.
[6] 姚玉权, 仰建岗, 高杰, 何亮, 许竞. 就地热再生沥青混合料的材料组成波动及控制策略[J]. 材料导报, 2022, 36(16): 22030098-10.
[7] 杨彦海, 王汉彬, 杨野. 冻融循环作用下乳化沥青冷再生混合料空隙特性[J]. 材料导报, 2022, 36(16): 21110128-7.
[8] 岳红亚, 毕玉峰, 徐 润, 张常勇, 丁婷婷, 李怀峰, 刘晓威, 宋修广. 废旧轮胎在道路工程中的应用研究进展[J]. 材料导报, 2022, 36(16): 22040129-11.
[9] 刘芳, 王旗, 张翛, 彭义军, 刘晓东. 老化对废机油再生沥青流变特性的影响及机理[J]. 材料导报, 2022, 36(16): 22040405-6.
[10] 李文博, 柳力, 刘朝晖, 刘俊豪. 促溶-表面处理二元复合作用对橡胶沥青性能的影响[J]. 材料导报, 2022, 36(11): 21010088-7.
[11] 范世平, 朱洪洲, 钟伟明. 生物重油对老化50#沥青的再生效果评价[J]. 材料导报, 2022, 36(11): 21010089-5.
[12] 杨健, 郭乃胜, 郭晓阳, 王志臣, 房辰泽, 褚召阳. 基于分子动力学的泡沫沥青-集料界面黏附性研究[J]. 材料导报, 2021, 35(z2): 138-144.
[13] 戴文亭, 刘丹丹, 郭威, 李颖松, 安胤. 冻融循环条件下硅烷偶联剂改性泡沫沥青混合料的损伤特性[J]. 材料导报, 2021, 35(Z1): 264-268.
[14] 索智, 陈欢, 张奥, 聂磊. 废植物油再生沥青紫外老化机理及路用性能[J]. 材料导报, 2021, 35(Z1): 662-668.
[15] 凌天清, 崔立龙, 张意, 田波, 李定珠. 考虑沥青层表面细观构造的探地雷达空隙率检测研究[J]. 材料导报, 2021, 35(24): 24081-24087.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed