Please wait a minute...
材料导报  2022, Vol. 36 Issue (10): 20080079-10    https://doi.org/10.11896/cldb.20080079
  金属与金属基复合材料 |
镁锂合金焊接技术研究现状
刘沁钰1,2, 周利1,2,*, 戎校宇3, 杨海峰1,2, 赵洪运1,2
1 哈尔滨工业大学先进焊接与连接国家重点试验室,哈尔滨 150001
2 哈尔滨工业大学(威海)山东省特种焊接技术重点试验室,山东 威海 264209
3 宁波坚睿新材料科技有限公司,浙江 宁波 315400
Research Status of Magnesium-Lithium Alloy Welding Technology
LIU Qinyu1,2, ZHOU Li1,2,*, RONG Xiaoyu3, YANG Haifeng1,2, ZHAO Hongyun1,2
1 State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001, China
2 Shandong Provincial Key Laboratory of Special Welding Technology, Harbin Institute of Technology at Weihai, Weihai 264209, Shandong, China
3 JianRui New Material Technology Co., Ltd at Ningbo, Ningbo 315400, Zhejiang, China
下载:  全 文 ( PDF ) ( 27214KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 镁锂合金是一种新兴的超轻材料,具有比强度和比刚度高、弹性模量高、塑性和冲击韧性好等优点,是航天航空、兵器工业、核工业、汽车和医疗器械等领域理想的结构材料之一。镁锂合金的迅速发展和应用对其连接提出了新的要求,需要研发合适的焊接方法来实现合金连接,并逐步取代铆接等机械连接方式。目前镁锂合金的焊接方法主要集中于非熔化极惰性气体保护焊(TIG焊)、激光焊、电子束焊和搅拌摩擦焊。
   熔焊方法的核心问题在于热输入的控制,把控不当会导致焊接缺陷、晶粒粗化、合金元素烧损和未焊透等问题,虽然搅拌摩擦焊可以在很大程度上避免这些缺陷,但其本身也存在焊后延伸率大幅下降的问题。当前学者的研究主要集中于焊接工艺、接头组织和力学性能等方面,经过相关的探索研究成功实现了镁锂合金的焊接。
   目前,镁锂合金的各种焊接方法在工艺研究上都取得了较好的效果,能够在较宽的工艺窗口下得到成形良好、无缺陷的焊接接头;在合适的焊接工艺下,焊缝区晶粒显著细化,甚至出现纳米级晶粒,部分研究中焊接接头各区域组织均匀,成功得到极窄的热影响区;大部分学者的研究都表明焊接接头的抗拉强度和焊缝的硬度得到提高,采用人工时效处理以恢复接头的延伸率具有良好的前景。
   为进一步推广镁锂合金焊接技术的实际应用,本文对TIG焊、激光焊、电子束焊和搅拌摩擦焊方法得到的焊缝成形、接头微观组织和力学性能进行了综述,分析和探讨了不同焊接方法在镁锂合金焊接中存在的核心问题以及可能的解决措施,并对镁锂合金焊接技术未来的探索方向进行了思考和展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘沁钰
周利
戎校宇
杨海峰
赵洪运
关键词:  镁锂合金  焊接技术  微观组织  力学性能    
Abstract: Magnesium-lithium alloy (Mg-Li alloy) is a type of rising ultra-light material with a series of advantages, such as high specific strength and specific stiffness, high Young's modulus, excellent plasticity and impact toughness, which is one of the ideal structural materials in aerospace and aviation, weapon, nuclear, vehicle, medical equipment and other fields. With the rapid development and application of Mg-Li alloy, new requirements for the joining of Mg-Li alloy arise. Appropriate welding methods need to be developed to achieve the join and replace the mechanical joint such as riveting gradually. Currently, the welding methods of Mg-Li alloy mainly focus on tungsten inert gas arc welding (TIG wel-ding), laser welding, electron beam welding and friction stir welding.
The core problem of fusion welding is the control of heat input. Improper control will lead to welding defects,such as grain coarsening, element loss and incomplete penetration, etc. Although friction stir welding can avoid these defects to a large extent, deteriation in joint elongation is difficult to avoid. At present, the research mainly focus on weld process, microstructure and mechanical properties of joints, and the welding of Mg-Li alloy is successfully realized through the exploratory research.
Currently, many remarkable achievements about study of Mg-Li alloy welding process have been achieved, and well-formed and defect-free joints can be obtained under a wide process window. Under the appropriate welding process, the grain in the weld zone was significantly refined, and nanoscale grains even appeared. In some studies, the microstructure distribution of the welded joint was uniform, and extremely narrow heat affected zone was successfully obtained. Most studies have shown that the tensile strength of joints and the hardness of welds are improved, and artificial aging treatment to restore the elongation of joints has a good prospect.
In order to further popularize the practical application of Mg-Li alloy welding technology, the joint formation, microstructure and mechanical pro-perties obtained by the above welding methods were reviewed in this paper. The core problems and probable solutions of different welding me-thods in Mg-Li alloy welding were analyzed and discussed. The exploration direction of Mg-Li alloy welding technology in the future was considered and prospected.
Key words:  magnesium-lithium alloy    welding technology    microstructure    mechanical property
发布日期:  2022-05-24
ZTFLH:  TG406  
基金资助: 国家自然科学基金面上项目(51974100); 山东省重点研发计划(2018GGX103053)
通讯作者:  zhou.li@hit.edu.cn   
作者简介:  刘沁钰,2020年7月毕业于哈尔滨工业大学(威海),获得焊接专业(方向)学士学位,现为哈尔滨工业大学在读硕士研究生,目前主要研究领域为搅拌摩擦焊接与加工技术。
周利,现为哈尔滨工业大学(威海)材料学院副教授、博士研究生导师,2000—2010年在哈尔滨工业大学焊接专业(方向)先后获学士、硕士和博士学位,主要从事固相连接技术、焊接冶金与焊接性等方面研究,近年来以第一/通讯作者发表SCI/EI检索论文60余篇。
引用本文:    
刘沁钰, 周利, 戎校宇, 杨海峰, 赵洪运. 镁锂合金焊接技术研究现状[J]. 材料导报, 2022, 36(10): 20080079-10.
LIU Qinyu, ZHOU Li, RONG Xiaoyu, YANG Haifeng, ZHAO Hongyun. Research Status of Magnesium-Lithium Alloy Welding Technology. Materials Reports, 2022, 36(10): 20080079-10.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20080079  或          http://www.mater-rep.com/CN/Y2022/V36/I10/20080079
1 Kojima Y, Inoue M, Tanno O. Journal of the Japan Institute of Metals, 1990, 54(3), 354.
2 Zhang M L, Elkin F M. Super light magnesium-lithium alloy, Science Press, China, 2010,pp. 5 (in Chinese).
张密林, Elkin F M. 镁锂超轻合金, 科学出版社, 2010, pp.5.
3 Haferkamp H, Niemeyer M, Boehm R, et al. Materials Science Forum, 2000, 350(3), 31.
4 Yang G Y, Hao Q T, Jie W Q. Foundry Technology, 2004, 6(1), 19 (in Chinese).
杨光昱, 郝启堂, 介万奇. 铸造技术, 2004, 6(1), 19.
5 Muga C O, Zhang, Z W. Advances in Materials Science and Engineering, 2016, 2016, 11.
6 Wu L B, Cui C L, Wu R Z, et al. Materials Science and Engineering A, 2011, 528, 2174.
7 Liu X H. Study on preparation and properties of superlight-superplastic Mg-Li alloy. Ph.D. Thesis, Harbin Engineering University, China, 2012(in Chinese).
刘旭贺. 超轻超塑性镁锂合金的制备及性能研究. 博士学位论文, 哈尔滨工程大学, 2012.
8 Zou Y. Effects of alloying elements and processing on deformation mechanisms and properties of Mg-Li alloys. Ph.D. Thesis, Harbin Engineering University, China, 2016(in Chinese).
邹云. 镁锂合金成分和处理工艺对变形机制及性能的影响. 博士学位论文, 哈尔滨工程大学, 2016.
9 Zhang J, Zhang Z H. Magnesium alloys and their applications, Chemical Industry Press, China, 2004, pp. 283(in Chinese).
张津, 章宗和. 镁合金及应用, 化学工业出版社, 2004, pp. 283.
10 Zhao H L, Guan S K, Zheng F Y. Transactions of Nonferrous Metals So-ciety of China, 2005, 15(1), 144.
11 Wu W, Qiao H, An K, et al. International Journal of Plasticity, 2014, 62, 105.
12 Liu Y, Liu X H, Xiao Y, et al. Light Alloy Fabrication Technology, 2017, 45(1), 61 (in Chinese).
刘洋, 刘旭贺, 肖阳, 等. 轻合金加工技术, 2017, 45(1), 61.
13 Cao F R, Ding H, Li Y L,et al. Materials Science and Engineering A, 2010, 527(9), 2335.
14 Atkins G, Marya M, Olson D, et al. In: Symposium on Magnesium Technology 2004 Held at the TMS Annual Meeting. Charlotte, 2004, pp. 37.
15 Yu W X. Study on laser welding technology of LZ91 Mg-Li alloy. Master's Thesis, Huazhong University of Science and Technology, China, 2018 (in Chinese).
余文祥. LZ91镁锂合金激光焊接工艺研究. 硕士学位论文, 华中科技大学, 2018.
16 Ning J, Zhang L G, Han C Q, et al. Materials Research Express, 2019, 6(10), 106545.
17 Jiang B C, Hu S H. Ordnance Material Science and Engineering, 2019, 42(6), 50 (in Chinese).
姜炳春, 胡少华. 兵器材料科学与工程, 2019, 42(6), 50.
18 Song K J, Dong Z B, Li Y, et al. Electro-Mechanical Engineering, 2020, 36(1), 46 (in Chinese).
宋奎晶, 董志波, 李洋, 等. 电子机械工程, 2020, 36(1), 46.
19 Shah P H, Badheka V J. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 2019, 233(6), 1191.
20 Defalco J. Welding Journal, 2006, 85(3), 42.
21 Arbegast W J. Welding Journal, 2006, 85(3), 28.
22 Gürel Ćam, Selcuk Mistikoglu. Journal of Materials Engineering and Performance, 2014, 23(6), 1936.
23 Che Q Y, Wang K S, Wang W, et al. Rare Metals, 2019, 40(9), 2552.
24 Yang C W. Materials science, Intechopen, Rijeka, 2013, pp. 303.
25 Jackson J H, Frost P D, Loonam A C, et al. JOM, 1949, 185, 149.
26 Freeth W E, Raynor G V. Journal Institute of Metals, 1953, 82, 575.
27 Mathewson A G, Myers H P. Journal of Physics F: Metal Physics, 1973, 3, 623.
28 Saboo M, Atkinson J T N. Journal of Materials Science, 1982, 17, 3564.
29 Crisp R S. Journal of Physics F: Metal Physics, 1983, 13, 1317.
30 Sambasiva R G, Prasad Y V R K. Research Mechanica, 1983, 9, 41.
31 Yang C W, Lui T S, Chen L H, et al. Scripta Materialia, 2009, 61(12), 1141.
32 Liu X H, Gu S H, Wu R Z, et al. Transactions of Nonferrous Metals So-ciety of China, 2011, 21(3), 477.
33 Lyu J X, Yang W X, Wu S K, et al. Chinese Journal of Lasers, 2014, 41(3), 60 (in Chinese).
吕俊霞, 杨武雄, 吴世凯, 等. 中国激光, 2014, 41(3), 60.
34 Zhang J, Feng X S, Zhang C C, et al. Transactions of the China Welding Institution, 2017, 38(4), 119(in Chinese).
张婧, 封小松, 张成聪, 等. 焊接学报, 2017, 38(4), 119.
35 Askariani S A, Pishbin H, Moshref J M. Journal of Alloys and Compounds, 2017, 724, 859.
36 Liu G. Investigation of microstructure and properties of dual phase Mg-Li alloy by friction stir processing and welding. Ph.D. Thesis, Chongqing University, China, 2018 (in Chinese).
刘刚. 双相镁锂合金搅拌摩擦加工和焊接的组织与性能研究. 博士学位论文, 重庆大学, 2018.
37 Cao F R, Xue G Q, Zhou B J, et al. Metals and Materials International, 2019, 25, 570.
38 Liu G, Ma Z D, Wei G B, et al. Journal of Materials Processing Techno-logy, 2018, 267, 393.
39 Yang C W, Chen Y W. Procedia Engineering, 2014, 75, 88.
40 Fan M, Zhang G F, Chai D L, et al. Welding Pipe and Tube, 2019, 42(11), 25 (in Chinese).
范蒙, 张贵锋, 柴东郎, 等. 焊管, 2019, 42(11), 25.
41 Chen H C, Hung F Y, Lui T S, et al. Materials Transactions, 2013, 54(4), 505.
42 Yang C W. Materials Transactions, 2014, 55(2), 371.
43 Liu F C, Tan M J, Liao J, et al. Journal of Materials Science, 2013, 48(24), 8539.
[1] 周港明, 杭美艳, 路兰, 王浩, 蒋明辉. 风积沙3D打印砂浆材料参数与各向异性研究[J]. 材料导报, 2022, 36(9): 21020081-5.
[2] 李伟, 曹睿, 闫英杰. 不同热处理态下粉末冶金花纹钢的组织性能及拉伸断裂行为[J]. 材料导报, 2022, 36(9): 21020104-7.
[3] 张文健, 郑浩, 李博文, 宋国君, 马丽春. 超支化磷腈衍生物修饰GO及其环氧复合材料的力学性能研究[J]. 材料导报, 2022, 36(8): 20110164-4.
[4] 杨来东, 李全安, 陈晓亚, 兖利鹏. Mg-Sm系镁合金的研究进展[J]. 材料导报, 2022, 36(7): 20070180-9.
[5] 肖棚, 高杰维, 刘里根, 韩靖. 激光熔覆修复EA4T车轴钢显微组织和强度评价[J]. 材料导报, 2022, 36(7): 21070180-7.
[6] 于天阳, 马国政, 郭伟玲, 何鹏飞, 黄艳斐, 刘明, 王海斗. 冷喷涂不同陶瓷含量Cu-Ti3SiC2复合涂层的微观组织及性能研究[J]. 材料导报, 2022, 36(7): 21120172-6.
[7] 杨浩, 李尧, 郝建民. 激光增材制造Inconel 718高温合金的研究进展[J]. 材料导报, 2022, 36(6): 20080021-10.
[8] 褚洪岩, 高李, 秦健健, 汤金辉, 蒋金洋. 磺化石墨烯对再生砂超高性能混凝土力学性能和耐久性能的影响[J]. 材料导报, 2022, 36(5): 20090345-5.
[9] 张显, 蔡明, 孙宝忠. 植物纤维增强复合材料的湿热老化研究进展[J]. 材料导报, 2022, 36(5): 20100169-11.
[10] 张晓光, 时海军, 刘杰, 党漭, 何燕. 碳纳米管对膨胀阻燃天然橡胶的燃烧和力学性能的影响[J]. 材料导报, 2022, 36(5): 21010074-6.
[11] 庞华, 辛勇, 岳慧芳, 彭航, 蒲曾坪, 邱玺, 孙志鹏, 刘仕超. 大晶粒UO2燃料芯块性能研究进展[J]. 材料导报, 2022, 36(4): 22010197-8.
[12] 孙晓燕, 陈龙, 王海龙, 张静. 面向水下智能建造的3D打印混凝土配合比优化研究[J]. 材料导报, 2022, 36(4): 21050230-9.
[13] 杨博恒, 钱辉, 师亦飞, 康莉萍. 不同训练条件下NiTi形状记忆合金超细丝力学性能的稳定性[J]. 材料导报, 2022, 36(4): 21010093-5.
[14] 闫昭朴, 王扬卫, 张燕, 刘毅烽, 程焕武. 玄武岩纤维复合材料静、动态力学性能和抗弹性能研究进展[J]. 材料导报, 2022, 36(4): 20110209-9.
[15] 耿健智, 朱德举, 郭帅成, 易勇, 周琳林. 基于不同地域海砂的海水海砂混凝土力学性能试验研究[J]. 材料导报, 2022, 36(3): 21010189-8.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed