Please wait a minute...
材料导报  2021, Vol. 35 Issue (z2): 391-394    
  金属与金属基复合材料 |
316L不锈钢双极板元素富集耐腐蚀特性研究
郭金刚1,2, 陈红3, 李俊荣4, 唐子龙2, 陈清明1
1 昆明理工大学材料科学与工程学院,昆明 650093
2 清华大学新型陶瓷与精细工艺国家重点实验室,北京 100084
3 北京航天动力研究所,北京 100076
4 淳华氢能科技股份有限公司,东莞 318000
Study on Corrosion Resistance Characteristics of 316L Stainless Steel Bipolar Plate Element Enrichment
GUO Jingang1,2, CHEN Hong3, LI Junrong4, TANG Zilong2, CHEN Qingming1
1 School of Materials Science and Engineering, Kuming University of Science and Technology, Kuming 650093, China
2 State Key Laboratory of Advanced Ceramics and Fine Technology, Tsinghua University, Beijing 100084, China
3 Bejing Aerospace Propulsion Institute,Beijing 100076,China
4 Chunhua Hydrogen Energy Technology Co., Ltd., Dongguan 318000,China
下载:  全 文 ( PDF ) ( 5046KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 双极板的耐腐蚀性能是制约质子交换膜(PEM)水电解制氢技术产业化应用的瓶颈之一。通过对金属不锈钢涂层改性提高耐腐蚀性,可提高其使用寿命,增加转换率,降低成本,达到产业化生产的目的。本文采用316L不锈钢作为测试样品,待测样品采用环氧树脂进行包覆,测试时溶液中暴露尺寸为1 cm×1 cm。在电解液为1 mol/L Na2SO4溶液中,富集电位分别为1.2 V、1.3 V、1.4 V、1.5 V、1.6 V条件下,进行了Cr、Ni元素富集,在2 mol/L H2SO4溶液中进行动电位极化测试,得到了富集前未进行阴极还原和在-1.3 V进行阴极还原两组样品的腐蚀特性,包括腐蚀电流密度、腐蚀电位。通过进行扫描电子显微镜测试、X射线光电子能谱测试、接触电阻测试,探究了阴极还原过程、元素富集电位对元素富集产生的影响。结果表明在-1.3 V进行阴极还原,1.5 V进行元素富集的样品耐腐蚀性能最好。此外富集电位为2 V时的元素富集实验结果表明过高的元素富集电位会使材料表面富集层损坏,双极板板材耐腐蚀性下降。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郭金刚
陈红
李俊荣
唐子龙
陈清明
关键词:  不锈钢双极板  元素富集  耐腐蚀  动电位极化    
Abstract: The corrosion resistance of bipolar plates is one of the key property restricting the industrial application of proton exchange membrane (PEM) water electrolysis hydrogen production technology. By modifying the metal stainless steel coating to improve the corrosion resis-tance, it can increase its service life, increase the conversion rate, reduce the cost, and achieve the purpose of industrial production. This article used 316L stainless steel as the test sample, the sample to be tested was coated with epoxy resin, and the exposed size in the solution was 1 cm×1 cm during the test. In the electrolyte of 1 mol/L Na2SO4 solution, the enrichment potentials were 1.2 V, 1.3 V, 1.4 V, 1.5 V, 1.6 V, respectively, the Cr and Ni elements were enriched, and the reaction was carried out in the 2 mol/L H2SO4 solution. The potential polarization test obtained the corrosion characteristics of the two samples without cathodic reduction before enrichment and cathodic reduction at -1.3 V, including corrosion current density and corrosion potential. Through scanning electron microscope test, X-ray photoelectron spectroscopy test, contact resistance test, the influence of cathodic reduction process and element enrichment potential on element enrichment was explored. The results show that the cathodic reduction at -1.3 V and the element enriched at 1.5 V have the best corrosion resistance. In addition, the element enrichment experiment results under the condition of the enrichment potential is 2 V show that too high element enrichment potential will damage the enrichment layer on the surface of the material and reduce the corrosion resistance of the bipolar plate.
Key words:  stainless steel bipolar plates    element enrichment    corrosion resistance    potential polarization
                    发布日期:  2021-12-09
ZTFLH:  TG174  
基金资助: 国家重点研发计划(2018YFC0810002)
通讯作者:  qmchenqq@163.com   
作者简介:  郭金刚,昆明理工大学硕士研究生,主要研究方向为新能源材料、功能陶瓷材料。
陈清明,昆明理工大学教授,博士研究生导师,昆明理工大学材料科学与工程学院副院长。2006年获美国匹兹堡大学机械工程博士学位。主持和参与国家自然科学基金4项,发表学术论文100余篇,SCI收录80余篇。获国家发明专利10余项。其团队主要研究方向包括压电、铁电材料及器件,巨磁阻材料及薄膜功能材料及微器件。
引用本文:    
郭金刚, 陈红, 李俊荣, 唐子龙, 陈清明. 316L不锈钢双极板元素富集耐腐蚀特性研究[J]. 材料导报, 2021, 35(z2): 391-394.
GUO Jingang, CHEN Hong, LI Junrong, TANG Zilong, CHEN Qingming. Study on Corrosion Resistance Characteristics of 316L Stainless Steel Bipolar Plate Element Enrichment. Materials Reports, 2021, 35(z2): 391-394.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2021/V35/Iz2/391
1 Dunn S. International Journal of Hydrogen Energy, 2002, 27(3),235.
2 Grigoriev S A, Millet P, Volobuev S A, et al. International Journal of Hydrogen Energy, 2009, 34(11),4968.
3 Zhan D, Han L, Zhang J, et al. Chemical Society Reviews, 2017, 46(5),1526.
4 Zhang L, Chae S R, Hendren Z, et al. Chemical Engineering Journal, 2012, 204-206,87.
5 Carmo M, Fritz D L, Mergel, Jürgen, et al. International Journal of Hydrogen Energy, 2013, 38(12),4901.
6 Ayers K E, Capuano C, Anderson E B. In: Ecs Meeting. 2012.
7 Cho K H, Lee W G, Lee S B, et al. Journal of Power Sources, 2008, 178(2),671
8 吴博,付宇,侯中军,等. 电源技术, 2015, 39(6), 1222.
9 Zhang M, Lin G, Wu B, et al. Journal of Power Sources, 2012, 205,318.
10 Fu Y, Hou M, Lin G, et al. Journal of Power Sources, 2008, 176(1),282.
11 Feng K, Li Z, Sun H, et al. Journal of Power Sources, 2013, 222,351.
12 沈杰, 刘卫, 王铁钢,等. 中国腐蚀与防护学报, 2017(1),65.
[1] 封帆, 王美玲, 李振华, 陆永浩. 超超临界机组用HR3C奥氏体耐热钢研究进展[J]. 材料导报, 2021, 35(9): 9186-9195.
[2] 李强, 赵特, 魏磊山, 陈明华, 孙旭东. Cu含量对生物可降解Zn-Cu合金组织和性能的影响[J]. 材料导报, 2021, 35(8): 8088-8092.
[3] 肖奇, 孙文磊, 刘金朵, 黄海博. Ni60A/WC激光熔覆涂层表面抗蚀行为[J]. 材料导报, 2021, 35(8): 8146-8150.
[4] 朱云娜, 高利霞, 熊彤彤, 杜婵, 张士民, 陈必清. 化学镀工艺制备高耐腐蚀性能的Ni-Co-B-Pr复合镀层[J]. 材料导报, 2021, 35(4): 4159-4164.
[5] 翟建树, 李春燕, 田霖, 卢煜, 寇生中. Fe基非晶涂层耐腐蚀性能的影响因素及提升措施综述[J]. 材料导报, 2021, 35(3): 3129-3140.
[6] 井德胜, 白晓宇, 冯志威, 张明义, 李翠翠. 玄武岩纤维增强聚合物锚杆用于地下结构抗浮的可行性研究[J]. 材料导报, 2021, 35(19): 19223-19229.
[7] 狄翀博, 王金华, 闫二虎, 王星粤, 陈运灿, 贾丽敏, 徐芬, 孙立贤. Nb-Ti-Co氢分离合金的显微组织和耐腐蚀性能[J]. 材料导报, 2021, 35(18): 18109-18115.
[8] 曹明艳, 俞爱斌, 吴玉萍, 乔磊, 程杰. 氧化石墨烯/聚酯树脂涂层的制备及耐腐蚀性能[J]. 材料导报, 2021, 35(10): 10227-10231.
[9] 梁广, 朱胜, 王文宇, 王晓明, 韩国峰, 任智强. 铝合金腐蚀防护技术研究现状及发展趋势[J]. 材料导报, 2020, 34(Z2): 429-436.
[10] 梁惠东, 郑汉杰, 杨浩, 王晨, 陈俊锋, 汪炳叔. 氮添加量对块体纳米晶NdFeB永磁材料的影响[J]. 材料导报, 2020, 34(8): 8025-8030.
[11] 马潇磊, 张成成, 张朝磊, 马晓艺, 赵海东, 方文. 基于“混杂”设计的索氏体新型不锈钢的组织和性能[J]. 材料导报, 2020, 34(4): 4103-4107.
[12] 瞿猛, 唐建国, 叶凌英, 李承波, 李建湘, 周旺, 邓运来. 过时效与添加Zr对Al-Zn-Mg合金耐腐蚀性能影响的对比[J]. 材料导报, 2020, 34(2): 2083-2087.
[13] 马旻昱, 连勇, 张津. 增材制造技术制备高熵合金的研究现状及展望[J]. 材料导报, 2020, 34(17): 17082-17088.
[14] 李萧, 胡水平, 韩天棋. Nd、Y对AZ31镁合金热轧退火薄板耐蚀性的影响[J]. 材料导报, 2020, 34(10): 10088-10092.
[15] 施佳鑫, 朱卫华, 朱红梅, 陈志勇, 刘晋京, 史新灵, 王新林. CaB6对激光熔覆生物陶瓷涂层组织和生物学性能的影响[J]. 材料导报, 2020, 34(10): 10030-10034.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed