Please wait a minute...
材料导报  2021, Vol. 35 Issue (z2): 311-317    
  金属与金属基复合材料 |
难混溶材料的抗辐照性能研究
卢跃磊, 刘伟阳, 李玉阁
大连理工大学材料科学与工程学院,大连 116024
Study on Radiation Resistance of Immiscible Materials
LU Yuelei, LIU Weiyang, LI Yuge
School of Materials Science and Engineering, Materials of Dalian University of Technology, Dalian 116024, China
下载:  全 文 ( PDF ) ( 4907KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 核能利用是我国未来能源领域发展的重点,核电设备结构和功能部件难以避免地受核辐照损伤影响,材料因辐照点缺陷损伤聚集作用逐渐产生性能退化进而影响核电设备安全。因此,新型抗核辐照材料开发始终是核电应用的基础方向。近年来,难混溶材料体系因其结构和热力学特殊性受到广泛关注,是当前开发新型抗辐照材料的主要方向,但辐照损伤动力学过程具有时间跨度大、空间尺度广的特点,辐照缺陷的产生及其相互作用机制仍难以厘清。本文从我国核电发展迫切需求出发,立足于辐照下材料的基本变化和相关原理,从难混溶Cu-Nb纳米多层结构的抗辐照材料设计和辐照损伤的动力学模拟两方面对核辐照材料研究进行了评述,并进一步对比分析了纳米多层膜的超硬效应与抗辐照多层膜的相似性,为抗辐照材料设计提供新的设计思路。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
卢跃磊
刘伟阳
李玉阁
关键词:  辐照损伤  离位峰  热峰  Cu-Nb  纳米结构  纳米多层膜    
Abstract: Nuclear energy utilization is a very important future energy development in China. The structural and functional parts of nuclear power equipment can be unavoidably affected by the nuclear radiation damage, and the material performances gradually degrade due to the point defects aggregation by the irradiation jeopardizing the safety of the nuclear equipment. Therefore, the developments of radiation tolerance materials have always been the basic for nuclear power applications. In recent years, the systems of immiscible materials have been widely concerned for its unique structure and thermodynamics, which are the main route for exploring new radiation tolerance materials. However, the kinetics process of radiation damage exhibits large time span and wide space scale characteristics, and it is difficult to clarify the growth and interaction mechanisms for the irradiation defects. Based on the basic changes and related principles for radiation tolerance materials, this paper reviews the research on nuclear radiation materials from the aspects of the design for radiation resistant materials and the kinetic simulation for irradiation damage of the Cu-Nb immiscible nano-multilayer structure for urgent needs of nuclear power development. Furthermore, the similarity is analyzed to find common characteristics between the super-hardness effect of the nano-multilayer thin films and the multilayered anti-irradiation materials, hoping the results can provide some new ideas for the design of radiation tolerance materials.
Key words:  radiation damage    dissociation peak    thermal peak    Cu-Nb    nanostructure    nanomultilayer
                    发布日期:  2021-12-09
ZTFLH:  TG 156.88  
  TB 114.2  
通讯作者:  ygli@dlut.edu.cn   
作者简介:  卢跃磊,2018年6月毕业于河南科技大学,获得材料学学士学位。现为大连理工大学材料学院硕士研究生,在李玉阁副教授的指导下进行研究。目前主要研究领域为难混溶薄膜材料的抗辐照性能。
李玉阁,工学博士,副教授,硕士研究生导师。中国机械工程学会表面工程分会青年工作委员会委员,国家973计划项目秘书。2013年于上海交通大学博士毕业后,同年加入大连理工大学材料学院表面工程实验室工作至今。长期从事材料表面工程理论和应用研究,主要研究方向是高功率脉冲等离子体技术与装备、硬质涂层的强韧化机理及极端环境服役涂层开发与应用。
引用本文:    
卢跃磊, 刘伟阳, 李玉阁. 难混溶材料的抗辐照性能研究[J]. 材料导报, 2021, 35(z2): 311-317.
LU Yuelei, LIU Weiyang, LI Yuge. Study on Radiation Resistance of Immiscible Materials. Materials Reports, 2021, 35(z2): 311-317.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2021/V35/Iz2/311
1 Stork D, Agostini P, Boutard J L. Journal of Nuclear Materials, 2014, 277, 291.
2 张廷克, 李闽榕, 潘启龙. 中国核能发展报告(2020), 社会科学文献出版社, 2021
3 刘思冕, 韩卫忠.物理学报, 2019, 68(13),137901.
4 Robin W G, Rudy J M K, Lyndon E. Nature Materials, 2008, 7(9), 683.
5 Zinkle S J, Was G S. Acta Materialia, 2013, 61, 735.
6 Chimi Y, Iwase A, Ishikawa N, et al. Journal of Nuclear Materials, 2001, 297, 355.
7 Pacaud J, Jaouen C, Gladyszewski G. Journal of Applied Physics, 1999, 86, 4847.
8 Henrikssona K O E, Nordlund K.AIP Advances, 2015, 5, 117152.
9 杨文斗. 反应堆材料学,原子能出版社, 2000.
10 Kinchin G H, Pease R S. Reports on Progress in Physics, 1955, 18(1), 1.
11 Mark T R, Ordean S O.Journal of Nuclear Materials, 1982, 110, 147.
12 Szenes G.Physical Review B, 1995, 51(13), 8026.
13 Brinkman J A. American Journal of Physics, 1956, 24(4), 246.
14 Bringa E M, Hall E, Johnson R E, et al.Nuclear Instruments and Me-thods in Physics Research Section B, 2002, 193(1-4), 734.
15 商佳程, 刘颖, 涂铭旌. 稀有金属材料与工程, 2013, 42(9), 1884.
16 Kiritani M. Journal of Nuclear Materials, 2000, 276, 41.
17 Orowan E. Nature, 1942, 149, 643.
18 Yu K Y, Liu Y, Sun C, et al. Journal of Nuclear Materials, 2012, 425, 140.
19 Wei Y P, Liu P P, Zhu Y M, et al. Journal of Alloys and Compounds, 2016, 676, 481.
20 Zinkle S J.Physica Scripta, 2016, T167, 014004.
21 Misra A, Fayeulle S, Kung H, et al.Nuclear Instruments and Methods in Physics Research B, 1999, 148, 211.
22 Wang P P, Xu C, Fu E G, et al.Applied Surface Science, 2018, 440, 396.
23 Singh B N. Philosophical Magazine, 1974, 29(1), 25.
24 Nita N, Schaeublin R, Victoria M, et al. Philosophical Magazine, 2005, 85(4-7), 723.
25 Demkowicz M J, Bellon P, Wirth B D. MRS Bulletin, 2010, 35(12), 992.
26 Han W Z, Demkowicz M J, Fu E G, et al.Acta Materialia, 2012, 60, 6341.
27 Höchbauer T, Misra A, Hattar K, et al. Journal of Applied Physics, 2005, 98, 123516.
28 Han W Z, Demkowicz M J, Mara N A, et al. Advanced Materials, 2013, 25, 6975.
29 Misra A, Demkowicz M J, Zhang X, et al. JOM, 2017, 59(9), 62.
30 Bhattacharyya D, Demkowicz M J, Wang Y Q, et al. Microscopy and Microanalysis, 2012, 18(1), 152.
31 Demkowicz M J, Bhattacharyya D, Usov I, et al. Applied Physics Letters, 2010, 97, 161903.
32 Hattar K, Demkowicz M J, Misra A, et al. Scripta Materialia, 2008, 58, 541.
33 Demkowicz M J, Wang Y Q, Hoagland R G, et al. Nuclear Instruments and Methods in Physics Research B, 2007, 261, 524.
34 Gao Y, Yang T F, Xue J M, et al.Journal of Nuclear Materials, 2011, 413, 11.
35 刘望, 邬琦琦, 陈顺礼, 等.物理学报, 2012, 61(17), 176802.
36 Fu E G, Misra A, Wang H, et al. Journal of Nuclear Materials, 2010, 407, 178.
37 Misra A, Hoagland R G, Kung H. Philosophical Magazine, 2004, 84(10), 1021.
38 Lei R S, Wang M P, Guo M X, et al. Transactions of Nonferrous Metals Society of China, 2009, 19(2), 272.
39 邰凯平, Ashkenazy Y, Averback R S, 等.中国核科学技术进展报告, 2015, 4, 370.
40 郭中正, 孙勇, 段永华, 等.稀有金属, 2011, 35(1), 59.
41 Zhang X, Li N, Anderoglu O, et al. Nuclear Instruments and Methods in Physics Research B, 2007, 261, 1129.
42 Was G S. Springer, 2017.
43 Ziegler J F, Ziegler M D, Biersack J P. Nuclear Instruments and Methods in Physics Research B, 2010, 2681818.
44 Egeland G W, Valdez J A, Maloy S A, et al. Journal of Nuclear Materials, 2013, 435, 77.
45 Wang T L, Li J H. Scripta Materialia, 2007, 157, 160.
46 Demkowicz M J, Hoagland R G. Journal of Applied Mechanics, 2009, 1(3), 421.
47 Beyerlein I J, Wang J, Zhang R F. APL Materials, 2013, 1(3), 032112.
48 Bai X M, Voter A F, Hoagland R G, et al. Science, 2010, 37(5973), 1631.
49 颜强. 带电粒子在固体中的输运及辐射损伤建模研究,博士学位论文, 哈尔滨工程大学, 2016.
50 Caturla M J, Soneda N, Alonso E, et al. Journal of Nuclear Materials, 2000, 276, 13.
51 Fu C C, Torre J D, Willaime F, et al. Nature Materials, 2005, 4(1), 68.
52 Sivak A B, Chernov V M, Romanov V A, et al. Journal of Nuclear Materials, 2011, 417, 1067.
53 Sivak A B, Chernov V M, Dubasova N A, et al. Journal of Nuclear Materials, 2007, 367, 316.
54 Vattre A, Jourdan T, Ding H, et al. Nature Communications, 2016, 7, 10424.
55 李玉阁, 李冠群, 李戈扬.物理学报, 2013, 62(1), 016801.
56 Li Y G, Li G Q, Yang D, et al.Materials Letters, 2012, 80, 155.
[1] 舒忠虎, 何建军, 段焱森, 罗金, 周承伟, 鲍江涌. 复合氟化改性制备EP-ZnO纳米超疏水涂层的研究[J]. 材料导报, 2021, 35(z2): 56-59.
[2] 付磊, 林莉, 罗云蓉, 谢文玲, 王清远, 李辉. 梯度纳米结构材料疲劳性能研究进展[J]. 材料导报, 2021, 35(3): 3114-3121.
[3] 张鹏飞, 赖小明, 洪长青, 杨雷, 张玉生, 梁龙, 董薇, 刘峰, 马彬, 刘佳, 陈维强, 张璇, 陶积柏. 抗氧化三维纤维增强酚醛气凝胶的性能[J]. 材料导报, 2021, 35(16): 16155-16159.
[4] 李红,邢增程,Erika Hodúlová,胡安明,Wolfgang Tillmann. 退火处理工艺在纳米多层膜材料研究中的应用进展[J]. 材料导报, 2020, 34(3): 3099-3105.
[5] 靳柯, 卢晨阳, 豆艳坤, 贺新福, 杨文. 高熵合金辐照损伤的实验研究进展[J]. 材料导报, 2020, 34(17): 17018-17030.
[6] 王雪姣, 乔珺威, 吴玉程. 高熵合金:面向聚变堆抗辐照损伤的新型候选材料[J]. 材料导报, 2020, 34(17): 17058-17066.
[7] 付念, 谷雨, 郭雨, 张建飞, 陈道俊, 刘啸宇, 丛日东. Fe掺杂AlN纳米线/三维片层复合分级纳米结构的自组装生长[J]. 材料导报, 2020, 34(12): 12036-12039.
[8] 陈有为, 王夏天, 李琦, 张威波, 史丹, 黄姣, 陈丹超, 周生虎. “核-壳-冠”聚合物胶束模板合成无机中空纳米材料的研究进展[J]. 材料导报, 2020, 34(11): 11090-11098.
[9] 肖瑶, 黄理, 邱睿智, 叶小球, 敖冰云. 钚中氦行为研究进展[J]. 材料导报, 2020, 34(11): 11137-11144.
[10] 韩瑞路, 阎红娟. Ti-Si-N纳米多层膜的研究进展[J]. 材料导报, 2019, 33(Z2): 169-174.
[11] 吴治涌, 水世显, 张显, 杨鹏, 万艳芬. 贵金属纳米颗粒-二维过渡金属硫化物复合纳米结构:制备技术与光电性能[J]. 材料导报, 2019, 33(3): 426-432.
[12] 李大玉, 张文韬, 张超. 不同种类金属掺杂改性TiO2材料光催化性能的研究进展[J]. 材料导报, 2019, 33(23): 3900-3907.
[13] 尹晓丽, 于思荣, 胡锦辉. Ni3S2微纳米结构超疏水表面的制备及耐蚀性能[J]. 材料导报, 2019, 33(20): 3372-3376.
[14] 马志鸣, 肖仁贵, 廖霞, 柯翔. 片层纳米结构磷酸铁制备及对磷酸铁锂电性能的影响[J]. 材料导报, 2018, 32(19): 3325-3331.
[15] 罗来马, 徐梦瑶, 昝祥, 朱晓勇, 李萍, 程继贵, 吴玉程. 不同辐照粒子下钨及钨合金辐照损伤行为的研究进展[J]. 《材料导报》期刊社, 2018, 32(1): 41-46.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed