Please wait a minute...
材料导报  2021, Vol. 35 Issue (z2): 262-267    
  无机非金属及其复合材料 |
化学激发对煤气化渣-水泥体系抗压强度影响机理研究
席雅允1, 沈玉2, 刘娟红1,3,4, 吴瑞东1, 许鹏玉1
1 北京科技大学土木与资源工程学院,北京 100083
2 中交二公局第三工程有限公司,西安 710016
3 北京科技大学城市地下空间工程北京市重点实验室,北京 100083
4 北京科技大学金属矿山高效开采与安全教育部重点实验室,北京 100083
Influence Mechanism of Chemical Excitation on Compressive Strength of Slag Cement System in Coal Gasification
XI Yayun1, SHEN Yu2, LIU Juanhong1,3,4, WU Ruidong1, XU Pengyu1
1 College of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing 100083, China
2 The Third Engineering Co., Ltd., CCCC Second Highway Engineering Co., Ltd., Xi'an 710016, China
3 Beijing Key Laboratory of Urban Underground Space Engineering, University of Science and Technology Beijing, Beijing 100083, China
4 Key Laboratory of Ministry of Education for Efficient Mining and Safety of Metal Mines, USTB, Beijing 100083,China
下载:  全 文 ( PDF ) ( 9819KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 针对煤气化渣大量堆存造成的环境污染和固废资源浪费的问题,本工作采用化学激发方法来激发煤气化渣活性,探究不同激发剂对煤气化渣-水泥体系抗压强度的影响。试验选取硫酸盐类、碱类和聚合盐类激发剂,确定最优激发剂种类和掺量;通过扫描电镜(SEM)、X射线衍射(XRD)和热重分析(TG)等微观手段,研究不同激发剂对煤气化渣-水泥体系水化产物的影响。结果表明,硫酸盐类最优激发剂为硫酸钠,最佳掺量为2.5%,试样3 d、28 d抗压强度增长率分别达14.3%、3.4%;碱类最优激发剂为氢氧化钙,最佳掺量为0.5%,试样3 d、28 d抗压强度增长率分别达18.4%、1.8%;聚合铝最佳掺量为2.0%,试样3 d、28 d抗压强度增长率分别达24.0%、3.3%。加入激发剂后试样早期抗压强度均得到提高,微观特征表明试样水化程度加深,且有助于钙矾石和凝胶体等水化产物的生成,提高试样强度,为煤气化渣在水泥基材料中的应用提供了理论依据。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
席雅允
沈玉
刘娟红
吴瑞东
许鹏玉
关键词:  化学激发  煤气化渣  抗压强度  水化产物  微结构    
Abstract: Aiming at the problems of environmental pollution and waste of solid resources caused by large amount of coal gasification slag, this paper uses chemical excitation method to stimulate the activity of coal gasification slag, and explores the influence of different activators on the compressive strength of coal gasification slag-cement system. Sulfate, alkali and polymeric salt activators were selected to determine the optimal type and dosage of activators. The effects of different activators on the hydration products of coal gasification slag-cement system were studied by means of scanning electron microscopy (SEM), X-ray diffraction (XRD) and TG. The results show that the optimal sulfate activator is sodium sulfate, and the optimal dosage is 2.5%. The compressive strength of the sample increases by 14.3% and 3.4% after 3 and 28 days, respectively. The optimal alkali activator was calcium hydroxide, and the optimal dosage was 0.5%. The compressive strength of the samples increased by 18.4% and 1.8% after 3 and 28 days, respectively. When the optimal content of polymeric aluminum is 2.0%, the compressive strength increases by 24.0% and 3.3% after 3 and 28 days, respectively. The early compressive strength of the samples was improved after the addition of the stimulating agent. The microscopic characteristics showed that the hydration degree of the samples was deepened, which was helpful to the formation of hydration products such as ettringite and gel, and improved the strength of the samples. This provided a theoretical basis for the application of coal gasification slag in cement-based materials.
Key words:  chemical excitation    coal gasification slag    compressive strength    hydration products    microstructure
                    发布日期:  2021-12-09
ZTFLH:  TU528  
基金资助: 国家自然科学基金(51834001);中央高校基本科研业务费(FRF-BD-20-01A;FRF-BD-20-01B)
通讯作者:  juanhong1966@ hotmail.com   
作者简介:  席雅允,北京科技大学土木与资源工程学院硕士研究生,目前主要研究领域是绿色高性能混凝土。
刘娟红,北京科技大学土木与资源工程学院教授,博士生导师。长期从事现代混凝土技术教学与研究工作。主持国家自然科学重点基金、面上基金、国家重点基础研究发展计划、省部级科技计划项目和横向科研课题等60余项。获省部级科技进步一等奖2项、二等奖1项、三等奖4项。获国家发明专利20余项。在公开刊物上发表文章160余篇,被SCI、EI收录60余篇。出版学术专著《绿色高性能混凝土技术与工程应用》、《活性粉末混凝土》、《固体废弃物与低碳混凝土》等。主编教材《土木工程材料》。主要科研成果应用于北京市奥运工程地铁工程混凝土裂缝控制;广东省、浙江省道路桥梁工程;新疆、宁夏等自治区重点工程;大唐国际发电有限公司粉煤灰品质提升等方面。
引用本文:    
席雅允, 沈玉, 刘娟红, 吴瑞东, 许鹏玉. 化学激发对煤气化渣-水泥体系抗压强度影响机理研究[J]. 材料导报, 2021, 35(z2): 262-267.
XI Yayun, SHEN Yu, LIU Juanhong, WU Ruidong, XU Pengyu. Influence Mechanism of Chemical Excitation on Compressive Strength of Slag Cement System in Coal Gasification. Materials Reports, 2021, 35(z2): 262-267.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2021/V35/Iz2/262
1 卫小芳,王建国,丁云杰.中国科学院院刊,2019,34(4), 409.
2 刘娟红,许鹏玉,周昱程,等.硅酸盐通报,2020,39(8),2528.
3 Purdon A O. Journal of the Society of Chemical Industry, 1940, 59(9),191.
4 魏威,高彦斌,陈忠清,等,硅酸盐通报,2020,39(12),3889.
5 卞立波,董申,陶志.材料导报,2020,34(S2),1299.
6 刘进琪,王世玉,彭晖,等.交通科学与工程,2020,36(3),8.
7 韩天,于佳丽,吴燕开.科学技术与工程,2019,19(7),231.
8 蔺喜强,王栋民,许晨阳,等.粉煤灰,2012,24(01),4.
9 陈伟,唐焱杰,田健,等.武汉理工大学学报,2016,38(2),1.
10 陈伟,余匡迪,袁波.硅酸盐通报,2020,39(6),1822.
11 王奕仁,王栋民,翟梦怡,等.矿业科学学报,2019,4(1),86.
12 杭美艳,吕学涛,郭艳梅,等.硅酸盐通报,2019,38(3),878.
13 刘方华.建筑材料学报,2020,23(5),1038.
14 姜关照,吴爱祥,王贻明.工程科学学报,2020,42(8),963.
15 Wang A G, Zheng Y, Zhang Z H, et al. Engineering,2020,6(6),237.
16 吕擎峰,王子帅,谷留杨,等. 中南大学学报:英文版, 2020,27(6),1691.
17 方军良,陆文雄,徐彩宣.上海大学学报,2002(3),255.
18 王健,吕宪俊,胡术刚.煤炭学报,2010,35(3),486.
19 Ai W D, Xue B, Wei C D,et al.Journal of Applied Polymer Science,2018,135(17),522
20 崔博强,刘音,李浩,等.矿业研究与开发,2018,38(3),127.
21 宋维龙,朱志铎,浦少云,等.材料导报:研究篇,2020,34(11),22070.
[1] 杨玉柱, 黄维蓉, 耿嘉庆, 崔通, 晏茂豪. 基于半经验的UHPC配合比设计方法[J]. 材料导报, 2021, 35(z2): 188-193.
[2] 葛洁雅, 朱红光, 李宗徽, 李为健, 沈正艳, 侯金良, 杨森. 煤矸石粗骨料-地聚物混凝土的力学与耐久性能研究[J]. 材料导报, 2021, 35(z2): 218-223.
[3] 代金芯, 石宵爽, 王清远, 张红恩, 栾晨晨, 张宽裕, 杨富花. 多因素对再生复合掺料基地聚物混凝土抗压强度的影响[J]. 材料导报, 2021, 35(9): 9077-9082.
[4] 龚建清, 罗鸿魁, 张阳, 龚啸, 谢泽酃, 吴五星, 戴远帆. 减缩剂和HCSA膨胀剂对UHPC力学性能和收缩性能的影响[J]. 材料导报, 2021, 35(8): 8042-8048.
[5] 石永恒, 芶立. 晶核剂对CMAS系微晶玻璃结构和性能的影响[J]. 材料导报, 2021, 35(5): 5027-5031.
[6] 史金华, 史才军, 欧阳雪, 刘剑辉, 黄勇, 吴泽媚. 超高性能混凝土受压弹性模量研究进展[J]. 材料导报, 2021, 35(3): 3067-3075.
[7] 何晓雁, 张智鑫, 赵燕茹, 郝贠洪, 秦立达. 基于灰靶决策对BFCC力学性能及抗渗性能的评估[J]. 材料导报, 2021, 35(20): 20035-20039.
[8] 黄炜, 葛培, 李萌, 许洪飞. 混杂纤维再生砖骨料混凝土正交试验及卷积神经网络预测分析[J]. 材料导报, 2021, 35(19): 19022-19029.
[9] 周宏元, 王业斌, 王小娟, 石南南. 泡沫混凝土压缩性能尺寸效应研究[J]. 材料导报, 2021, 35(18): 18076-18082.
[10] 李碧雄, 汪知文, 苏柳月, 冷发光. 减小EPS混凝土收缩的配合工艺试验研究[J]. 材料导报, 2021, 35(16): 16021-16027.
[11] 黄炜, 周烺, 葛培, 杨涛. 基于PSO-BP和GA-BP神经网络再生砖骨料混凝土强度模型的对比研究[J]. 材料导报, 2021, 35(15): 15026-15030.
[12] 张高展, 葛竞成, 张春晓, 杨军, 刘开伟, 王爱国, 孙道胜. 养护制度对混凝土微结构形成机理的影响进展[J]. 材料导报, 2021, 35(15): 15125-15133.
[13] 王杏, 陈洋, 曹桂莲, 邓承继, 丁军, 余超, 祝洪喜. 氮化温度对MgO-C耐火材料结构和性能的影响[J]. 材料导报, 2021, 35(12): 12053-12056.
[14] 郑少军, 刘天乐, 高鹏, 蒋国盛, 冯颖韬, 李丽霞, 陈宇. 固井水泥石孔隙结构演变及力学强度发展规律[J]. 材料导报, 2021, 35(12): 12092-12098.
[15] 刘显刚, 安建成, 孙佳佳, 张骞, 秦艳濛, 刘新红. 化学气相沉积法制备SiC纳米线的研究进展[J]. 材料导报, 2021, 35(11): 11077-11082.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed