Please wait a minute...
材料导报  2021, Vol. 35 Issue (z2): 268-274    
  无机非金属及其复合材料 |
废弃混凝土再生微粉固化盐渍土的强度特性及微观机理研究
王一名, 常立君, 李滢
青海大学土木工程学院,西宁 810016
Study on Strength Characteristics and Micro Mechanism of Saline Soil Solidified by Recycled Fine Powder of Waste Concrete
WANG Yiming, CHANG Lijun, LI Ying
School of Civil Engineering, Qinghai University, Xining 810016, China
下载:  全 文 ( PDF ) ( 9661KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 再生微粉由其成本低、易获取的特点用于固化盐渍土可以达到固废利用、节约资源的目的。本实验基于无侧限抗压强度试验、XRD和SEM试验,探究了再生微粉联合粉煤灰、水泥固化盐渍土的强度特性、微观机理、固化机制,结果表明:再生微粉替代部分粉煤灰、水泥掺入盐渍土后,固化土抗压强度较天然盐渍土有了大幅提升,且再生微粉替代粉煤灰的较优替代量为80%;再生微粉的掺入促进了粉煤灰的硅酸化反应,生成具有胶凝作用的水化硅酸钙、水化铝酸钙,相互构成网状结构,提高了土体稳定性;再生微粉联合水泥固化盐渍土时,生成的胶结能力较强的C-S-H和C-A-H凝胶会与再生微粉共同填充于土间孔隙中,使土体结构更加密实,通过凝胶的凝结硬化作用增加盐渍土的抗压强度。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王一名
常立君
李滢
关键词:  再生微粉  固化盐渍土  强度特性  微观机理    
Abstract: Recycled fine powder can be used to solidify saline soil due to its low cost and easy access characteristics, which can achieve the purpose of solid waste utilization and resource conservation. Based on unconfined compressive strength test, XRD and SEM test, this paper explores the strength characteristics, micro mechanism and solidification mechanism of saline soil solidified by recycled fine powder combined with fly ash and cement. The results show that the compressive strength of solidified soil is significantly higher than that of natural saline soil, and the better substitution amount of recycled fine powder for fly ash is 80%.The addition of recycled fine powder promotes the silicification reaction of fly ash, generates hydrated calcium silicate and hydrated calcium aluminate with cementation, forms a network structure with each other, and improves the stability of soil. When the recycled fine powder combined with cement solidified saline soil, the C-S-H and C-A-H gel with strong cementation ability will be filled with the recycled fine powder in the soil pores, which will make the soil structure more dense and increase the compressive strength of the saline soil through the hardening action of the gel.
Key words:  recycled fine powder    solidify saline soil    strength characteristics    micro mechanism
                    发布日期:  2021-12-09
ZTFLH:  TU448  
基金资助: 岩石力学与堤坝工程教育部重点实验室开放研究基金项目(2019005);国家自然科学基金项目(51668052)
通讯作者:  changlijun2008@163.com   
作者简介:  王一名,2019年6月毕业于大连民族大学,获工学学士学位。现为青海大学土木工程学院硕士研究生。主要研究方向为岩土及地下工程。
常立君,青海大学土木工程学院,副教授,2002年7月毕业于青海大学留校任教至今,主要从事黄土、盐渍土工程力学特性等方面的研究。在国内外重要期刊发表文章10余篇。
引用本文:    
王一名, 常立君, 李滢. 废弃混凝土再生微粉固化盐渍土的强度特性及微观机理研究[J]. 材料导报, 2021, 35(z2): 268-274.
WANG Yiming, CHANG Lijun, LI Ying. Study on Strength Characteristics and Micro Mechanism of Saline Soil Solidified by Recycled Fine Powder of Waste Concrete. Materials Reports, 2021, 35(z2): 268-274.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2021/V35/Iz2/268
1 吕擎峰, 申贝, 王生新, 等.岩土力学, 2016, 37(3), 688.
2 魏丽, 柴寿喜.工程地质学报, 2018, 26(2), 407.
3 李敏, 王宸, 谢首斌, 等.深圳大学学报, 2018, 35(2), 120.
4 张佳兴, 裴向军, 韦璐.岩土工程学报, 2018, 40(1), 156.
5 廖晓兰, 杨久俊, 张磊, 等.岩土力学, 2015, 36(8), 2217.
6 黄斌, 聂琼, 徐言勇, 等.长江科学院院报, 2009, 26(11), 28.
7 Sabry A S, Zaki A B.Journal of Materials in Civil Engineering, 2001, 13(3), 161.
8 Rajasekaran G. Ocean Engineering, 2005, 32(8-9), 1133.
9 Wild S, Kinuthia J M, Jones G I, et al. Engineering Geology, 1998, 51(1), 37.
10 马郁.混凝土与水泥制品, 2016(10), 88.
11 刘小艳, 艳金丹, 刘开琼, 等.建筑材料学报, 2010, 13(3), 398.
12 张松, 李如燕, 董祥, 等.硅酸盐通报, 2018, 37(9), 2948.
13 代飞, 郭蕾, 赵日煦, 等.新型建筑材料, 2019, 46(7), 13.
14 刘香, 运喜刚, 张君瑞, 等.新型建筑材料, 2016, 43(3), 77.
15 张超, 党进谦, 马晓婷.人民黄河, 2011, 33(7), 132.
16 骆昊舒.天津市滨海新区固化氯盐渍土综合性能研究, 硕士学位论文, 长安大学, 2009.
17 黄新.硅酸盐学报, 2000, 28(4), 300.
[1] 刘佳宾, 刘新灵, 李振. 粉末高温合金夹杂物引起疲劳裂纹萌生微观机理研究现状[J]. 材料导报, 2021, 35(z2): 385-390.
[2] 周文娟, 谢谦, 赵磊. 再生微粉对聚羧酸减水剂的吸附性能研究[J]. 材料导报, 2020, 34(Z1): 246-248.
[3] 张承承. 复合材料非线性渐进损伤分析模型的建立及工程应用[J]. 材料导报, 2020, 34(18): 18030-18034.
[4] 王淋, 郭乃胜, 温彦凯, 谭忆秋, 尤占平. 考虑老化影响的岩沥青复合改性沥青流变特性及微观机制[J]. 材料导报, 2020, 34(18): 18065-18073.
[5] 高小建, 李双欣. 微波养护对掺矿渣超高性能混凝土力学性能的影响及机理[J]. 材料导报, 2019, 33(2): 271-276.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed