Please wait a minute...
材料导报  2020, Vol. 34 Issue (18): 18030-18034    https://doi.org/10.11896/cldb.20020005
  机非金属及其复合材料 |
复合材料非线性渐进损伤分析模型的建立及工程应用
张承承
北京航空航天大学能源与动力工程学院,北京 100191
Establishment and Engineering Application of Nonlinear Progressive Damage Analysis Model of Composite Materials
ZHANG Chengcheng
School of Energy and Power Engineering, Beihang University, Beijing 100191, China
下载:  全 文 ( PDF ) ( 4798KB )     补充信息
输出:  BibTeX | EndNote (RIS)      
摘要 复合材料结构损伤是导致结构失效的重要原因之一。本研究基于复合材料渐进损伤分析方法建立了非线性分析模型,重点分析了强度失效准则和损伤演化规律,并结合有限元分析方法研究了含损伤复合材料结构的本构关系,基于ANSYS软件编制分析程序对结构的损伤过程进行了数值模拟。以此为基础研究了复合材料开孔壁板、肋板结构以及舵轴结构在不同类型载荷作用下的失效模式和极限承载力,并通过试验验证了数值模拟的正确性。结果表明,该模型对复合材料构件的损伤形式和强度预测精确度比较高,具有工程实际应用价值。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张承承
关键词:  复合材料  渐进损伤  非线性  工程构件  静力载荷  强度特性    
Abstract: The development and aggregation of composite damage, is one of the important reason to cause composite structure failure. In this paper, the nonlinear analysis model was established based on the composite progressive damage analysis method. The research effort focused on composite strength failure criterions and numerical simulation of damage evolution laws. Combined with the finite element analysis method, the constitutive relations containing damage was derived. The composite structure failure modes and ultimate bearing capacity of the plate with hole, I-plate and rudder shaft structures were studied under different types of load by ANSYS. Finally, the validity of the numerical simulation was approved by experiments. Results show that the nonlinear progressive damage model can precisely predict the damage development of composite structure, additionally, engineering practical application value of this analytical method has been proved.
Key words:  composite materials    progressive damage    nonlinear    engineering components    static loads    strength characteristics
               出版日期:  2020-09-25      发布日期:  2020-09-12
ZTFLH:  TB33  
通讯作者:  cheng890630@163.com   
作者简介:  张承承,2012年6月毕业于北京航空航天大学,获得工学学士学位。并于2012年9月进入北京航空航天大学能源与动力工程学院攻读博士学位,主要从事复合材料损伤以及结构强度等方面的研究。
引用本文:    
张承承. 复合材料非线性渐进损伤分析模型的建立及工程应用[J]. 材料导报, 2020, 34(18): 18030-18034.
ZHANG Chengcheng. Establishment and Engineering Application of Nonlinear Progressive Damage Analysis Model of Composite Materials. Materials Reports, 2020, 34(18): 18030-18034.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20020005  或          http://www.mater-rep.com/CN/Y2020/V34/I18/18030
1 Tang Z W.Research for composite material macro-mesoscopic gradual damage analytic model considering the interface. Ph.D. Thesis, Harbin Institute of Technology, China, 2013(in Chinese).
唐占文,考虑界面相的复合材料宏-细观渐进损伤解析模型研究.博士学位论文,哈尔滨工业大学,2013.
2 Liu P F, Zheng J Y. Materials & Design, 2010, 31(8),3825.
3 Zhang C C,Wang J J.Materials Reports A:Review Papers, 2016, 26(5),159(in Chinese).
张承承,王建军.材料导报:综述篇, 2016, 26(5),159.
4 Zhao G P, Cho C D. Composite Structures, 2006, 78(1),91.
5 Linde P, Pleitner J, Boer H D, et al. In: ABAQUS User's Conference. Boston, Massachustts, 2004,pp.421.
6 Ridha M, Wang C H, Chen B Y, et al. Composites Part A: Applied Science and Manufacturing, 2014, 58,16.
7 Donadon MV, Iannucci L, Falzon B G, et al. Computers and Structures, 2008,86(11-12),1232.
8 Ramtekkar G S, Desai Y M, Shah A H. Mechanics of Advanced Materials and Structures, 2002, 9(2),133.
9 Volnei Tita, Jonas de Carvalho, Dirk Vandepitte. Composite Structures, 2008,83,413.
10 Wang C H, Yang Y, Kang Q.Engineering Mechanics, 2014 (9), 65(in Chinese).
王成华,杨阳,康强,等.工程力学,2014 (9), 65.
11 Wang Y Q, Tong M B, Zhu S H.Journal of Composite Materials, 2009, 26(5),159(in Chinese).
王跃全,童明波,朱书华.复合材料学报, 2009, 26(5),159.
[1] 杨松, 盛双华, 刘应开. 基于Au修饰的花状V2O5的表面增强拉曼散射研究[J]. 材料导报, 2020, 34(Z1): 34-38.
[2] 刘竹, 杨守禄, 姬宁, 罗扬, 许杰, 吴义强. 油茶果壳高值化利用研究进展[J]. 材料导报, 2020, 34(Z1): 120-127.
[3] 王启扬, 杨波. 碳酸盐基常固态复合相变材料的制备与性能研究[J]. 材料导报, 2020, 34(Z1): 137-139.
[4] 孙阔. 碳纤维复合材料滑动舱门刚度试验与仿真分析[J]. 材料导报, 2020, 34(Z1): 161-163.
[5] 于海洋, 李地红, 代函函, 高群. 混杂纤维增强应变硬化水泥基复合材料的弯曲性能研究[J]. 材料导报, 2020, 34(Z1): 229-233.
[6] 周长壮, 马琳, 崔庆贺, 梁金第. 颗粒增强铝基复合材料TLP连接综述与展望[J]. 材料导报, 2020, 34(Z1): 351-355.
[7] 张洋, 张海燕, 陈蕴博, 王大鹏, 陈林, 刘晓萍. 热处理对热压制备Al-Cu-Mg/SiCp制动耐磨复合材料组织及磨损性能的影响[J]. 材料导报, 2020, 34(Z1): 356-360.
[8] 李亚林, 孙垒, 曹柳絮, 焦孟旺, 罗伟, 邱振宇, 王畅. 汽车制动盘用铝基复合材料摩擦磨损研究进展[J]. 材料导报, 2020, 34(Z1): 361-365.
[9] 冉小杰, 周露, 黄福祥, 曾利娟. Cu/Al界面研究进展[J]. 材料导报, 2020, 34(Z1): 366-369.
[10] 秦笑, 王娟, 林高用, 郑开宏, 王海艳, 冯晓伟. 镀铜石墨/铜复合材料的组织和摩擦磨损性能[J]. 材料导报, 2020, 34(Z1): 380-384.
[11] 曹飞, 陈杰, 林泽力. 基于小波能量谱和信息熵的复合材料结构损伤诊断[J]. 材料导报, 2020, 34(Z1): 476-479.
[12] 郝新超. 基于Anderson-Darling检验的复合材料厚板层间拉伸强度性能研究及B基准值[J]. 材料导报, 2020, 34(Z1): 480-485.
[13] 陈姝敏, 吴迪, 何文浩, 陈勇. 银纳米粒子负载的石墨烯基环氧树脂复合材料的制备及性能[J]. 材料导报, 2020, 34(Z1): 503-506.
[14] 方敏, 王璐, 侯佳欣, 南晓茹, 赵彬. 丝素蛋白复合石墨烯类材料在生物医学领域中的研究进展[J]. 材料导报, 2020, 34(Z1): 511-515.
[15] 孙元平, 姚毅恒, 张淑娴, 马建新, 翁赟. 竹缠绕复合材料的线膨胀系数测试[J]. 材料导报, 2020, 34(Z1): 539-541.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed