Please wait a minute...
材料导报  2021, Vol. 35 Issue (Z1): 481-484    
  金属与金属基复合材料 |
双原子催化剂在电催化领域的应用研究进展
齐美丽1,2, 李勉拓1, 张梦娟1, 吴艳玲1
1 山东交通学院交通土建工程学院,济南 250357
2 山东百多安医疗器械股份有限公司,德州 251100
Progress in the Application of Dual-atom Catalysts in Electrocatalytic Field
QI Meili1,2, LI Miantuo1, ZHANG Mengjuan1, WU Yanling1
1 School of Transportation and Civil Engineering, Shandong Jiaotong University, Ji'nan 250357, China
2 China Shandong Branden Medical Devices Co., Ltd, Dezhou 251100, China
下载:  全 文 ( PDF ) ( 2112KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 单原子催化剂具有高选择性、最大的金属利用率、独特的电子结构等优点,成为电催化领域研究的热点。然而,在单原子催化剂的制备过程中,金属原子因具有较高的表面自由能而易发生团聚,造成催化活性位点数量和金属负载量降低,此种情况严重制约了单原子催化剂的进一步发展与应用。为进一步增加单原子活性位点数量和金属负载量,作为单原子催化剂的创新性扩展,双原子催化剂近年来开始走入学者的视野,两种金属原子之间的相互作用赋予了双原子催化剂卓越的催化性能。本文基于当前最新的研究工作,综述了同核/异核双原子催化剂的制备方法和表征及在电催化领域中的应用,并对其在电催化领域中所存在的挑战和未来的发展方向进行了简要展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
齐美丽
李勉拓
张梦娟
吴艳玲
关键词:  单原子催化剂  双原子催化剂  同核/异核  电催化    
Abstract: Single-atom catalysts (SACs) have been a hot topic in the field of electrocatalysis because of their advantages of high selectivity, maximum metal utilization and unique electronic structure. However, the metal atoms are often agglomerated during SACs preparation due to their high surface free energy, resulting in a decrease in the number of catalytic active sites and the metal load, which seriously hinders the further development of SACs. In order to solve the problems of small number of single metal active sites and low metal loading capacity, the innovative development of dual-atom catalysts (DACs) as SACs has been studied in depth in recent years. Recently, dual-atom catalysts (DACs) have attracted considerable research interest since they exhibit higher metal atom loading and more flexible active sites compared to SACs. In this work, the application of homonuclear/heteronuclear DACs in electrocatalysis was summarized by introducing the preparation methods and characterization methods of homonuclear/heteronuclear DACs, and the challenges and future development directions in the field of electrocatalysis were briefly prospected.
Key words:  single-atom catalysts    dual-atom catalysts    homonuclear/heteronuclear    electric catalytic
                    发布日期:  2021-07-16
ZTFLH:  TQ172  
基金资助: 山东交通学院博士科研启动基金项目(BS50004919;BS50004952);山东交通学院科研基金项目(Z201910;Z201918)
通讯作者:  wuyanling621@163.com   
作者简介:  齐美丽,山东交通学院讲师,2018年6月毕业于山东大学,获得工学博士学位。2020年1月起在山东大学和山东百多安医疗器械股份有限公司开展博士后研究,主要从事纳米材料领域的研究。在国内外学术期刊上发表论文20余篇,申请国家发明专利3项,其中授权1项,主持山东省自然科学基金青年基金项目、山东交通学院博士科研启动基金项目和山东交通学院科研基金项目等。吴艳玲,山东交通学院交通土建工程学院讲师。2019年在中国石油大学(华东)获得博士学位。目前主要从事能源材料领域的研究,其中包括纳米改性电催化剂和光催化剂,以及有机薄膜晶体管(OFET)。在国内外学术期刊上发表论文10余篇,申请国家发明专利2项,其中授权1项,主持山东交通学院博士科研启动基金项目和山东交通学院科研基金项目等。
引用本文:    
齐美丽, 李勉拓, 张梦娟, 吴艳玲. 双原子催化剂在电催化领域的应用研究进展[J]. 材料导报, 2021, 35(Z1): 481-484.
QI Meili, LI Miantuo, ZHANG Mengjuan, WU Yanling. Progress in the Application of Dual-atom Catalysts in Electrocatalytic Field. Materials Reports, 2021, 35(Z1): 481-484.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2021/V35/IZ1/481
1 Hou C C, Wang H F, Li C, et al. Energy & Environmental Science, 2020, 13, 1658.
2 Stamenkovic V R, Strmcnik D, Lopes P, et al. Nature Materials, 2017, 16(1), 57.
3 Liu J Y, Kong X, Zheng L R, et al. ACS Nano, 2020, 14, 1093.
4 Pan Y, Zhang C, Liu Z, et al. Matter, 2020, 2(1), 78.
5 Zhang H, Chung H T, Cullen D A, et al. Energy & Environmental Science, 2019, 12, 2548.
6 Shao M, Chang Q, Dodelet J P, et al. Chemical Reviews, 2016, 116, 3594.
7 Lu Z, Wang B, Hu Y, et al.Angewandte Chemie, 2018, 131, 2648.
8 Hou C C, Wang H F, Li C, et al. Energy & Environmental Science, 2020, 13, 1658.
9 Wang J, Hang Z, Liu W, et al.Journal of the American Chemical Society, 2017, 139, 17281.
10 Ding Q, Song B, Xu P, et al.Chem, 2016, 1(5), 699.
11 Lv X, Wei W, Wang H, et al. Applied Catalysis B: Environmental, 2019, 255(15), 117747.
12 Yang Y, Qian Y, Li H, et al.Science Advances, 2020, 6(23), eaba6586.
13 Kuang M, Wang Q, Han P, et al.Advance Energy Materials, 2017, 7(17), 1700193.
14 Chu S, Majumdar A.Nature, 2012, 488, 294.
15 Zhang B, Zheng X L, Voznyy O, et al. Science, 2016, 352(6283), 333.
16 Wu T, Sun S, Song J, et al.Nature Catalysis, 2019, 2, 763.
17 Li Z H, He H Y, Cao H B, et al. Applied catalysis B: Environmental, 2019, 240, 112.
18 Li C B, Chia-Shuo H, Duncan T L, et al. Journal of the American Chemical Society, 2019, 141, 14190.
19 Zhang J, Huang Q A, Wang J, et al. Chinese Journal of Catalysis, 2020, 41, 783.
20 Zhang C H, Yang S Z, Wu J J, et al. Advanced Energy Materials, 2018, 8, 1703487.
21 Lin L, Li H B, Yan C C, et al. Advanced Materials, 2019, 31(41), 1903470.
22 Liu K, Wang A, Zhang T.ACS Catalysis, 2012, 2(6), 1165.
23 Li F, Liu X, Chen Z. Small Methods, 2019, 3, 1800480.
24 Wang Q C, Lei Y P, Wang D S, et al. Energy & Environmental Science, 2019, 12, 1730.
25 Chen Z, Yan J, Jiang Q. Small Methods, 2018, 3, 1800291.
[1] 雷静, 陈子茜, 李怡招, 曹亚丽. 用于电催化氧还原制备双氧水的催化剂的研究进展[J]. 材料导报, 2021, 35(9): 9140-9149.
[2] 彭伟良, 袁斌. 自支撑过渡族金属基电催化析氧材料在碱水电解中的理论基础、研究现状及发展趋势[J]. 材料导报, 2021, 35(9): 9174-9185.
[3] 吴雷, 彭犇, 周军, 刘长波, 岳昌盛, 田玮, 宋永辉, 姜磊. 碳基非贵金属电催化剂研究进展[J]. 材料导报, 2020, 34(23): 23009-23019.
[4] 郭亚杰, 李帆, 郭栋, 张春瑞, 卢尚智. Ni(SxSe1-x)2纳米线阵列催化电极的制备与析氢性能[J]. 材料导报, 2020, 34(16): 16011-16015.
[5] 杜洪方, 王珂, 何松, 杨凯, 艾伟, 黄维. 富缺陷晶态WSe2纳米片:一种潜在的高效低成本析氢反应电催化剂[J]. 材料导报, 2020, 34(1): 1195-1200.
[6] 赵媛媛, 王德军, 赵朝成. 电催化氧化处理难降解废水用电极材料的研究进展[J]. 材料导报, 2019, 33(7): 1125-1132.
[7] 王会权, 陈惠, 王后, 巫静, 刘洪波. 还原温度对石墨烯负载Pd颗粒的结构与电催化性能的影响[J]. 材料导报, 2019, 33(22): 3695-3700.
[8] 王鹏飞, 邓宇, 郝丽梅, 邓橙, 赵蕾, 张新奇, 朱孟府. 铋掺杂二氧化锡/炭膜电催化膜的制备及表征[J]. 材料导报, 2019, 33(18): 3016-3020.
[9] 郝佳瑜, 刘易斯, 李文章, 李洁. 形貌可控的铂类贵金属氧还原电催化剂研究进展[J]. 材料导报, 2019, 33(1): 127-134.
[10] 王译文, 王海斗, 马国政, 陈书赢, 何鹏飞, 丁述宇. Ti4O7功能陶瓷材料研究与应用现状[J]. 材料导报, 2019, 33(1): 143-151.
[11] 褚 梅, 李 曦, 李 娜, 侯美静, 李小争, 董永志, 王 璐. 通过与氧化石墨烯复合增强金属有机框架材料MOF(Ni)-74的电催化析氢性能[J]. 《材料导报》期刊社, 2018, 32(9): 1417-1422.
[12] 夏艺萌, 吴帅, 谭丰, 李卫, 魏清茂, 闵春刚, 杨喜昆. 钴盐阴离子基团对Co-N-C催化剂电催化活性的影响[J]. 《材料导报》期刊社, 2018, 32(3): 362-367.
[13] 谭丰, 徐洋洋, 李卫, 徐明丽, 闵春刚, 史庆南, 刘锋, 杨喜昆. 在硫基功能化碳纳米管上组装壳层厚度可控的Au@Pt核壳纳米粒子以获得高的甲醇电催化氧化活性[J]. 材料导报, 2018, 32(23): 4041-4046.
[14] 张显峰, 赵朝成, 王德军, 赵媛媛, 张勇, 郭锐. 基于SnO2/Fe3O4粒子电极的三维电极体系的电催化性能*[J]. 《材料导报》期刊社, 2017, 31(8): 25-30.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[3] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[4] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[5] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[6] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[7] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[8] JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes[J]. Materials Reports, 2017, 31(22): 10 -14 .
[9] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[10] ZHOU Dianwu, HE Rong, LIU Jinshui, PENG Ping. Effects of Ge, Si Addition on Energy and Electronic Structure of ZrO2 and Zr(Fe,Cr)2[J]. Materials Reports, 2017, 31(22): 146 -152 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed