Please wait a minute...
材料导报  2021, Vol. 35 Issue (5): 5032-5039    https://doi.org/10.11896/cldb.20060151
  材料与可持续发展(四)——材料再制造与废弃物料资源化利用* |
高水平放射性废物固化用磷酸盐玻璃的研究进展
李秀英, 肖卓豪, 陶歆月, 汪永清, 杨柯, 石纪军, 邓波
景德镇陶瓷大学材料科学与工程学院,景德镇 333403
Research Progress on the Vitrification of High Level Radioactive Wastes in Phosphate Glassy Matrices
LI Xiuying, XIAO Zhuohao, TAO Xinyue, WANG Yongqing, YANG Ke, SHI Jijun, DENG Bo
School of Material Science and Engineering, Jingdezhen Ceramic Institute, Jingdezhen 333403, China
下载:  全 文 ( PDF ) ( 1828KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 高水平放射性废物的玻璃固化是利用化学稳定性、热稳定性和抗辐照稳定性好且废物包容量高的玻璃基质来将其固化,从而实现高放废物的长期、高效、安全处置。磷酸盐玻璃具有熔融温度低、熔体流动性好、均化时间短、对一些放射性废物的溶解度高等优点,可弥补已工业化应用的硼硅酸盐玻璃固化基质的不足,用于这些高放废物的安全固化。本文综述了磷酸盐玻璃基质在高放废物固化方面的研究进展。主要论述了磷酸盐玻璃用于固化高放废物的优势与不足;总结了目前已用于或可用于安全固化高放废物的磷酸盐玻璃基质;归纳了模拟高放废物磷酸盐玻璃固化体的组成、制备及性能;展望了未来研究的发展方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李秀英
肖卓豪
陶歆月
汪永清
杨柯
石纪军
邓波
关键词:  磷酸盐玻璃  高放废物  玻璃固化  废物包容量  稳定性    
Abstract: Long-term, efficient and safe immobilization of high level radioactive wastes (HLWs) can be achieved by vitrifying them in glassy matrices to prepare waste forms with high loadings, chemical durability, thermal stability and radiation resistance stability. Phosphate glasses are chosen as matrices to vitrify some HLWs due to their low melting temperatures, excellent melt fluidity, short melt time and high loadings. It can make up for the shortages of widely used borosilicate glasses during the immobilization process of some HLWs. Research progress on the vitrification of some HLWs in phosphate glassy matrices is reviewed in the present paper. Phosphate glassy matrices that have been currently used or have the potential to be used in the vitrification of HLWs are listed and their distinct advantages and disadvantages are clarified. Moreover, the compositions, preparation and properties of phosphate glassy waste forms are summarized. Future researches are proposed at the end of this paper.
Key words:  phosphate glass    high level radioactive wastes    vitrification    waste loading    stability
               出版日期:  2021-03-10      发布日期:  2021-03-12
ZTFLH:  TQ174.75  
基金资助: 国家自然科学基金(51962013;51762023);国家重点研发计划(2018YFC1903406);江西省自然科学基金/重点研发计划(20202BABL204020;20192ACB20018;20192ACB80007;20192BBEL50020;20201BBE51011);景德镇市科技计划(20192GYZD008-34)
通讯作者:  467270868@qq.com   
作者简介:  李秀英,1998—2005年在湖南师范大学化学化工学院先后获得应用化学专业本科和硕士学位。2010年毕业于中南大学材料学专业,获博士学位。2011—2013年在中南大学矿业工程博士后流动站从事研究工作。现为景德镇陶瓷大学材料科学与工程学院副教授,硕士研究生导师。长期从事铁磷酸盐玻璃材料的研究工作,主要研究方向包括玻璃与微晶玻璃材料、先进陶瓷材料。在相关领域发表论文40余篇,包括Journal of Non-Crystalline Solids、Ceramics International、Nano Letters、Bulletin of Materials Science、Journal of Central South University等。
肖卓豪,景德镇陶瓷大学材料科学与工程学院教授,硕士研究生导师。2009年博士毕业于中南大学,先后在新加坡南洋理工大学及中科院宁波材料技术与工程研究所进行2年访学研究,现为《陶瓷学报》副主编。主要研究方向包括先进陶瓷、纳米材料、玻璃与微晶玻璃,以及陶瓷色釉料等。
引用本文:    
李秀英, 肖卓豪, 陶歆月, 汪永清, 杨柯, 石纪军, 邓波. 高水平放射性废物固化用磷酸盐玻璃的研究进展[J]. 材料导报, 2021, 35(5): 5032-5039.
LI Xiuying, XIAO Zhuohao, TAO Xinyue, WANG Yongqing, YANG Ke, SHI Jijun, DENG Bo. Research Progress on the Vitrification of High Level Radioactive Wastes in Phosphate Glassy Matrices. Materials Reports, 2021, 35(5): 5032-5039.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20060151  或          http://www.mater-rep.com/CN/Y2021/V35/I5/5032
1 Li H J. Research of containing characteristics with calcium iron phosphate glass nuclear waste forms. Master’s Thesis, Southwest University, China,2013(in Chinese).
李海建.钙铁磷酸盐玻璃固化体包容特性研究.硕士学位论文,西南科技大学,2012.
2 Wang Hong. Research of structure and property of iron sodium phosphate glass-ceramics wasteforms. Master’s Thesis, Southwest University, China,2014(in Chinese).
王红.铁钠磷酸盐玻璃陶瓷固化体的结构与性能的研究.硕士学位论文,西南科技大学,2014.
3 Gao J, Ye G, Chen S Z, et al. Atomic Energy Science and Technology,2017,47(6),911(in Chinese).
高杰,叶钢,陈崧哲,等.原子能科学技术,2017,47(6),911.
4 Xu K. Materials China,2016,355(7),481(in Chinese).
徐凯.中国材料进展,2016,355(7),481.
5 Chu H R, Ruan J S, Zhang Y. Shangdong Chemical Industry,2017,46(16),65(in Chinese).
褚浩然,阮佳晟,张禹.山东化工,2017,46(16),65.
6 Donald I W. Journal of Materials Science,1997,32(22),5851.
7 Bingham P A, Hand R J, Forder S D. Materials Research Bulletin,2006,41,1622.
8 Yudintsev S V, Shiryaev A A. Technical Physics,2018,483(4),513.
9 Donald I W, Metcalfe B L, Fong S K, et al. Journal of Nuclear Mate-rials,2007,361,78.
10 Sales B C, Boatner L A. Science,1984,226,45.
11 Shih P Y. Materials Chemistry and Physics,2003,80,299.
12 Reis S T, Karabulut M, Day D E. Journal of Nuclear Materials,2002,304,87.
13 Marasinghe G K, Karabulut M, Ray C S, et al. Journal of Non-Crystalline Solids,2000,263-264,146.
14 Kim C W, Ray C S, Zhu D, et al. Journal of Nuclear Materials,2003,322,152.
15 Huang W, Day D E, Ray C S, et al. Journal of Nuclear Materials,2004,327,46.
16 Day D E, Wu Z, Ray C S, et al. Journal of Non-Crystalline Solids,1998,241,1.
17 Toshinori Okura, Tomoko Miyachi, Hideki Monma. Journal of the Euro-pean Ceramic Society,2006,26,831.
18 Pranesh Sengupta. Journal of Hazardous Materials,2012,235-236,17.
19 Aleksandrova E V, Malkovsky V I, Yudinstsev S V. Geochemistry,2018,482,1349.
20 Meskoa M G, Day D E, Bunker B C. Waste Management,2000,20,271.
21 Sun Y P. Vitrification of radioactive wastes containing fluorides from MSRs by phosphates and the properties of waste forms. Ph.D. Thesis, The University of Chinese Academy of Science, China,2016(in Chinese).
孙亚平,熔盐堆含氟放射性废物磷酸盐固化方案及固化体性能研究.博士学位论文,中国科学院大学,2016.
22 Sun Yaping, Xia Xiaobin, Qiao Yanbo, et al. Science China Materials,2016,59(4),279.
23 Liu Xueyang, Qiao Yanbo, Qian Zhenghua, et al. Journal of Nuclear Materials,2018,508,286.
24 乔延波,马洪军,孙亚平,等.中国专利,CN 105741897B,2018.
25 Karabulut M, Marasinghe G K, Ray C S, et al. Journal of Non-Crystalline Solids,1999,249,106.
26 Hu T H, Bao W M, Song C L, et al. Radiation Protection,2001,21(6),354(in Chinese).
胡唐华,鲍卫民,宋崇立,等.辐射防护,2001,21(6),354.
27 Hu T H, Xu S P, Bao W M,et al. Bulletin of the Chinese Ceramic Society,2003(2),86(in Chinese).
胡唐华,徐世平,鲍卫民,等.硅酸盐通报,2003(2),86.
28 Kitheri Joseph, Govindan Kutty K V,Chandramohan P, et al. Journal of Nuclear Materials,2009,384,262.
29 Kitheri Joseph, Sajal Ghosh, Govindan Kutty K V, et al. Journal of Nuclear Materials,2012,426,233.
30 Li Xiuying, Xiao Zhuohao, He Yongtao, et al. Journal of Non-Crystalline Solids,2019,523,119588.
31 Bai Jincheng, Hsu Jenhsien, Sandineni Prashanth, et al. Journal of Non-Crystalline Solids,2019,510,121.
32 Li X Y, Tao X Y, Xiao Z H, et al. Journal of Ceramics,2020,41(6),904(in English).
李秀英,陶歆月,肖卓豪,等.陶瓷学报,2020,41(6),904.
33 Liu Jingfeng, Zhu Yuying,Wang Fu, et al. Journal of Non-Crystalline Solids,2018,500,92.
34 Qian Bin, Yang Shiyuan, Liang Xiaofeng, et al. Journal of Molecular Structure,2012,1011,153.
35 Lai Yuanming, Liang Xiaofeng,Yang Shiyuan, et al. Journal of Alloys and Compounds,2014,617,597.
36 Rincón J Ma, Ramos C, Arboleda P, et al. Materials Letters,2018,227,82.
37 Stefanovsky S V, Stefanovsky O I, Danilov S S, et al. Ceramics International,2019,45,9331.
38 Moguš-Milanković A, Santi A, Gajović A, et al. Journal of Non-Crystalline Solids,2003,325,76.
39 Li Xiuying, Xiao Zhuohao, Luo Minhua, et al. Journal of Non-Crystalline Solids,2017,469,62.
40 Kitheri Joseph, Asuvathraman R, Venkata Krishnan R, et al. Journal of Nuclear Materials,2014,452,273.
41 Jen-Hsien Hsu, Jincheng Bai, Cheol-Woon Kim, et al. Journal of Nuc-lear Materials,2018,500,373.
42 Wang Fu, Liao Qilong, Chen Kuiru, et al. Journal of Alloys and Compounds,2014,611,278.
43 Naoto Kitamura, Akira Nomura, Akira Saitoh, et al. Journal of the Ceramic Society of Japan,2018,126(11),948.
44 Moguš-Milanković A, Santi A, Liina V, et al. Journal of Non-Crystalline Solids,2005,351,3235.
45 Santić A, Moguś-Milanković A, Furić K, et al. Journal of Non-Crystalline Solids,2007,353,1070.
46 Liang X F, Ren H. Glass,2014(2),8(in Chinese).
梁晓峰,任慧.玻璃,2014(2),8.
47 Kai Xu, Pavel Hrma, Wooyong Um, et al. Journal of Nuclear Materials,2013,441,262.
48 Li X Y, Jiang T, Yang H M, et al. Materials Reports A: Review Reports,2012,26(2),36(in Chinese).
李秀英,姜涛,杨华明,等.材料导报:综述篇,2012,26(2),36.
49 Li Xiuying, Yang Huaming, Song Xiaolan, et al. Journal of Non-Crystalline Solids,2013,379,208.
50 Reis S T, Pontuschka W M, Mogus-Milankovic A, et al. Journal of the American Ceramic Society,2017,100,1976.
51 Moguš-Milanković A, Gajović A, Santić A, et al. Journal of Non-Crystalline Solids,2001,289,204.
52 Karabulut M, Yuce B, Bozdogan O, et al. Journal of Non-Crystalline Solids,2011,357,1455.
[1] 姜鹏程, 王周福, 王玺堂, 刘浩, 马妍. 不同气氛下类石墨相氮化碳的合成及热稳定性能[J]. 材料导报, 2021, 35(6): 6048-6053.
[2] 曹诗瑶, 闫小琴. GaAs材料在光电化学电池中的稳定性[J]. 材料导报, 2021, 35(5): 5062-5066.
[3] 陈健, 顾晨宇, 杨宁, 邱天, 徐杰, 陈翔宇, 朱帅, 焦齐统, 潘炜, 刘晶晶. LaNi5.5Sn1.5-C-Si合金优异的长期吸/放氢循环性能[J]. 材料导报, 2021, 35(4): 4112-4117.
[4] 宋庆功, 董珊珊, 胡烨, 康建海, 严慧羽, 王明超, 刘志锋. Mo掺杂对γ-TiAl基合金能量稳定性和抗氧化性的影响[J]. 材料导报, 2021, 35(2): 2057-2063.
[5] 左文韬, 樊正方, 刘国强, 刘江, 廖成. 电荷传输层和热退火对钙钛矿薄膜电学性能的影响[J]. 材料导报, 2020, 34(Z1): 13-18.
[6] 杨波, 王启扬, 杨肖, 杨冬梅. 原位反应制备陶瓷基复合相变材料及其工艺研究[J]. 材料导报, 2020, 34(Z1): 128-131.
[7] 王启扬, 杨波. 碳酸盐基常固态复合相变材料的制备与性能研究[J]. 材料导报, 2020, 34(Z1): 137-139.
[8] 郭鹏, 冯云霞, 孟献春, 孟建玮, 潘维霖, 高云, 刘洋. 蓄盐融雪除冰剂微观分析及对混合料水稳定性的影响[J]. 材料导报, 2020, 34(6): 6062-6065.
[9] 武斌, 安晓鹏, 史才军, 魏子易, 元强. 混凝土流变特性对其稳定性及浇筑后外观质量的影响[J]. 材料导报, 2020, 34(4): 4043-4048.
[10] 李红,邢增程,Erika Hodúlová,胡安明,Wolfgang Tillmann. 退火处理工艺在纳米多层膜材料研究中的应用进展[J]. 材料导报, 2020, 34(3): 3099-3105.
[11] 刘轩之,顾开选 ,翁泽钜,王凯凯,崔晨,郭嘉,王俊杰. 铝合金深冷处理研究进展[J]. 材料导报, 2020, 34(3): 3172-3177.
[12] 吴玲玲, 任其亮, 罗莉. 公路沥青混凝土路面材料高温稳定性研究[J]. 材料导报, 2020, 34(22): 22083-22086.
[13] 耿九光, 兰倩, 刘光军, 周恒玉, 刘润喜. 基于表面能理论的破碎卵石与沥青粘附性能研究[J]. 材料导报, 2020, 34(20): 20034-20039.
[14] 刘亮, 汪志太, 杨伟, 王振军, 蔡长春, 余欢. 铜模喷铸Mg-6Al-1Y合金快冷组织形成及其固溶行为[J]. 材料导报, 2020, 34(20): 20066-20069.
[15] 王磊, 吴天昊, 崔丹钰, 杨旭东. 甲胺(MA)基钙钛矿太阳电池光诱导缺陷机理及稳定性提高[J]. 材料导报, 2020, 34(2): 2001-2004.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed