Please wait a minute...
材料导报  2020, Vol. 34 Issue (Z1): 542-547    
  高分子与聚合物基复合材料 |
基于HDTMS的一步法构筑棉织物超疏水表面
杨雪1,2, 苏静1,2, 王鸿博1,2
1 江苏省功能纺织品工程技术研究中心,无锡 214122;
2 生态纺织教育部重点实验室(江南大学),无锡 214122
Preparation of Superhydrophobic Surface of Cotton Fabric via One StepHDTMS Treatment
YANG Xue1,2, SU Jing1,2, WANG Hongbo1,2
1 Jiangsu Engineering Technology Research Center for Functional Textiles, Wuxi 214122, China;
2 Key Laboratory of Eco-Textiles of Ministry of Education (Jiangnan University), Wuxi 214122, China
下载:  全 文 ( PDF ) ( 6477KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用一步法对棉织物进行超疏水整理。利用十六烷基三甲氧基硅烷(HDTMS)降低织物表面能,采用纳米二氧化硅粒子(SNP)提高织物表面粗糙结构,并引入乙二胺四乙酸(EDTA)提高超疏水织物的耐久性。通过单因素优化实验和正交优化实验确定三种物质的最优用量,SNP为1.0%(质量分数,下同),EDTA为1.0%,HDTMS为4.0%。改性后的棉织物具有超疏水性和良好的疏油性,对水和油的静态接触角分别为160.5°、155.5°。耐水洗性测试表明低浓度EDTA的加入可提高织物的疏水耐洗性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨雪
苏静
王鸿博
关键词:  超疏水  纳米二氧化硅  乙二胺四乙酸  十六烷基三甲氧基硅烷  棉织物    
Abstract: Cotton fabric was finished in a simple one-step process to prepare superhydrophobic cotton fabric. Cetyltrimethoxysilane (HDTMS) was adop-ted to reduce surface energy of cotton fabric due to its long alkane chain, the nano-silica particles (SNP) were used to improve the surface roughness of the fabric. The ethylene diamine tetraacetic acid (EDTA) was applied to improve the treatment durability. The effects of SNP, EDTA and HDTMS concentration on the hydrophobicity of finished cotton fabric were studied. The results showed that the optimized conditions could be obtained when the concentration of SNP, EDTA and HDTMS were 1.0wt%, 1.0wt% and 4.0wt%, separately. The superhydrophobic cotton fabrics exhibited superhydrophobicity with an average water contact angle of 160.5°, and oleophobicity with an average oil contact angle of 155.5°. Furthermore, the durability efficiency of samples was quantitatively evaluated using standard washing test and the result showed the enhancement of EDTA.
Key words:  superhydrophobicity    silica nanoparticles    ethylenediaminetetraacetic acid    hexadecyltrimethoxysilane    cotton
                    发布日期:  2020-07-01
ZTFLH:  TB34  
基金资助: 国家重点研发计划(2017YFB0309100)
作者简介:  杨雪,自2018年9月于江南大学纺织科学与工程学院攻读纺织工程硕士学位,目前主要研究纺织材料的改性及功能纺织品的制备;王鸿博,教授,博士研究生导师。2007年毕业于江南大学,获得纺织科学与工程博士学位。主要研究功能性纺织材料制备理论与技术、功能纺织品设计、开发纤维制品现代加工技术和新型织造技术。并主持江苏省重大科技成果转化、江苏省科技攻关、省部级重点实验室等项目10项,主要参与国家十三五重大科技专项、国家自然科学基金等。发表学术论文180多篇,其中SCI源期刊论文40余篇,CSCD论文100余篇,授权发明专利15件。
引用本文:    
杨雪, 苏静, 王鸿博. 基于HDTMS的一步法构筑棉织物超疏水表面[J]. 材料导报, 2020, 34(Z1): 542-547.
YANG Xue, SU Jing, WANG Hongbo. Preparation of Superhydrophobic Surface of Cotton Fabric via One StepHDTMS Treatment. Materials Reports, 2020, 34(Z1): 542-547.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2020/V34/IZ1/542
1 Shirtcliffe N J, Mc Hale G, Atherton S, et al. Advances in Colloid and Interface Science,2010,161,124.
2 Holme. Color Technology,2007,123,59.
3 Li S, Huang J, Chen Z, et al. Journal of Materials Chemistry A,2017,5(1),31.
4 武梦春.自修复超疏水膜的构筑及功能.博士学位论文,吉林大学,2017.
5 许伟,安秋凤,郝丽芬等.高分子材料科学与工程,2011,27(7),13.
6 Jingxia Wu, Jingye Li, Bo Deng, et al. Scientific Reports,2013,3,2951
7 Wang H, Xue Y, Ding J, et al. Angewandte Chemie International Edition,2011,50,11433.
8 Li Y, Li L, Sun J. Angewandte Chemie International Edition,2010,49,6129.
9 Nosonovsky M, Bhushan B. Langmuir,2008,24(4),1525.
10 Manatunga D C, Silva R M, Silva K M N. Applied Surface Science,2016,360,777.
11 Xue C H, Yin W, Jia S T, et al. Nanotechnology,2011,22(41),415603.
12 Goncalves G, Marques P AA P, Trindade T, et al. Journal of Colloid & Interface Science,2008,324(1-2),42.
13 Crick C R, Parkin I P. Chemistry,2010,16(12),3568.
14 Li S, Xie H, Zhang S, et al. Chemical Communications,2007,46(46),4857.
15 Li Z, Xing Y, Dai J. Applied Surface Science,2008,254(7),2131.
16 Satoh K, Nakazumi H, Morita M. Journal of Sol-Gel Science and Techno-logy,2003,27(3),327.
17 Yu Haiping, Tian Xin, Luo Hao, et al. Materials Letters,2015,138,184.
18 Zhang M, Wang S, Wang C, et al. Applied Surface Science,2012,261,561.
19 Mulyadi A, Zhang Z, Deng Y. ACS Applied Materials Interfaces,2016,8,2732.
20 Huang W, Xing Y, Yu Y, et al. Applied Surface Science,2011,257(9),4443.
21 Mao Z, Yang C Q. Applied Polymer Science,2001,81(9),2142.
22 段薇.棉织物超疏水表面的仿生制备与表征.硕士学位论文,安徽大学,2011.
23 蒋连,陈杨武,王龙辉等.绵阳师范学院学报,2019,38(5),80.
24 陈云帮.金属表面硅烷膜的制备工艺及性能表征.硕士学位论文,合肥工业大学,2012
25 靳贺玲,张玉萍.纺织学报,2010,31(1),81.
26 Voulgaris Ch, Panou A, Amanatides E, et al. Surface & Coatings Technology,2005,200,351.
[1] 王永红, 杨倩倩, 刘辰, 刘会斌, 林晨, 肖鹏飞, 巩凌峰. 非金属超疏水纳米涂层技术的研究进展[J]. 材料导报, 2020, 34(Z1): 66-71.
[2] 杨福生, 张妍, 刘小斌, 陈永哲, 杨武. 种子生长法构筑超疏水-超亲油滤纸及其在油水分离中的应用[J]. 材料导报, 2020, 34(4): 4132-4136.
[3] 曹颐戬,王聪,王丽琴. 仿生超疏水材料及其在文物保护中的应用综述[J]. 材料导报, 2020, 34(3): 3178-3184.
[4] 张静, 许海波, 黄悦, 周忠华. 双层透明耐磨超疏水膜层的制备及界面结构控制[J]. 材料导报, 2020, 34(12): 12005-12009.
[5] 闫秋会, 夏卫东, 罗杰任, 霍鑫. SiO2气凝胶的常压干燥制备与性能表征[J]. 材料导报, 2020, 34(12): 12173-12177.
[6] 商富强, 黄丽清, 李刚, 张宇, 蔡亚坤, 王慧敏, 董伟丽, 张磊, 刘悠. 超亲水和具有不同黏性的超疏水阳极氧化铝膜的制备[J]. 材料导报, 2020, 34(10): 10003-10007.
[7] 陈建锋, 王方明, 钟史放, 胡明金, 张江涛, 王凯冬, 李小兵. 多巴胺表面改性CNTs制备微纳双重结构的Ni/CNTs@pDA超疏水复合镀层[J]. 材料导报, 2019, 33(Z2): 568-572.
[8] 周莹, 肖利吉, 姚丽, 徐祖顺. 自修复型超疏水材料研究进展[J]. 材料导报, 2019, 33(7): 1234-1242.
[9] 王茹,万芹,王高勇. 纳米二氧化硅对苯丙共聚物/水泥复合胶凝材料凝结硬化的影响[J]. 材料导报, 2019, 33(22): 3712-3719.
[10] 尹晓丽, 于思荣, 胡锦辉. Ni3S2微纳米结构超疏水表面的制备及耐蚀性能[J]. 材料导报, 2019, 33(20): 3372-3376.
[11] 何海峰,寇新秀,吕海亮,白瑞钦,刘欣,靳涛. 聚酰胺胺改性纳米二氧化硅的研究进展[J]. 材料导报, 2019, 33(17): 2882-2889.
[12] 刘广增, 董永春, 李冰, 王鹏, 崔桂新. 酒石酸铁改性废旧棉织物Fenton反应催化剂的制备及其应用性能研究[J]. 材料导报, 2018, 32(6): 888-893.
[13] 王晶, 史雪婷, 冯利邦, 强小虎, 刘艳花. 长效超疏水铜表面的构建及耐磨性和自清洁性能[J]. 材料导报, 2018, 32(24): 4314-4318.
[14] 高硕洪, 刘敏, 张小锋, 邓春明. 新型陶瓷基复合超疏水涂层的制备及其性能[J]. 材料导报, 2018, 32(20): 3510-3516.
[15] 孔 慧,刘卫丽,宋志棠. 一种非球形纳米二氧化硅颗粒制备新方法[J]. 《材料导报》期刊社, 2018, 32(10): 1683-1687.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed