Please wait a minute...
材料导报  2020, Vol. 34 Issue (Z1): 312-315    
  金属与金属基复合材料 |
Mg-Zn系合金沉淀硬化研究进展
王诗蒙1, 杨文朋1,2, 崔红保1,2, 郭学锋1,2, 孙尧1
1 河南理工大学材料科学与工程学院,焦作 454000;
2 河南省高性能轻金属材料及其数值模拟国际联合实验室,焦作 454000
Research Progress on Precipitation Hardening of Mg-Zn System Alloys
WANG Shimeng1, YANG Wenpeng1,2, CUI Hongbao1,2, GUO Xuefeng1,2, SUN Yao1
1 School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454000, China;
2 Henan International Joint Research Laboratory for High-performance Light Metallic Materials and Numerical Simulations, Jiaozuo 454000, China
下载:  全 文 ( PDF ) ( 2214KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 Mg-Zn系合金因具有显著的沉淀硬化效果,成为最具发展前景的结构材料之一。通过微合金化调控沉淀相行为、增加沉淀密度并减少颗粒间距,可进一步增强其沉淀硬化效果。微合金化元素可分为稀土、碱土以及其他元素,其中稀土元素可使沉淀相密度增加,碱土元素不仅能增加沉淀相密度,还能细化第二相,其他微合金化元素可在时效过程中提高沉淀相形核率,并加速沉淀过程。本文综述了Mg-Zn系合金沉淀行为的析出热力学以及析出序列的研究进展,归纳了微合金化元素对沉淀强化的作用,展望了Mg-Zn沉淀镁合金领域今后的研究方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王诗蒙
杨文朋
崔红保
郭学锋
孙尧
关键词:  Mg-Zn合金  热力学  沉淀  微合金化    
Abstract: Mg-Zn system alloys have become one of the most promising structural materials owing to the significantly precipitation strengthening. The impact of precipitation strengthening can be further improved by increasing the precipitation density and decreasing the particle spacing, which can be achieved by microalloying to control the precipitation behavior. Microalloyed elements include rare earth elements, alkaline earth elements and other elements. Rare earth elements can increase the density of precipitation, alkaline earth elements can refine the precipitation particles as well as increase precipitation density, other elements can increase the nucleation rate of precipitation and accelerate precipitate process. In pre-sent paper, the research progress of precipitation thermodynamics and precipitation sequence of Mg-Zn system alloys are reviewed, the effects of microalloyed elements on precipitation strengthening are summarized, and research direction of precipitation strengthening of Mg-Zn alloys is prospected.
Key words:  Mg-Zn alloys    thermodynamics    precipitation    microalloying
                    发布日期:  2020-07-01
ZTFLH:  TG146.2  
基金资助: 国家自然科学基金(51571086);河南理工大学博士基金(B2015-14)
作者简介:  王诗蒙,硕士研究生,2017年毕业于安阳工学院,获得学士学位。现为河南理工大学在读硕士研究生,主要研究领域为Mg-Zn-Sn合金;杨文朋,2012年博士毕业于西安理工大学材料科学与工程专业,现为河南理工大学材料科学与工程学院讲师,硕士研究生导师,主要从事镁合金研究和应用。
引用本文:    
王诗蒙, 杨文朋, 崔红保, 郭学锋, 孙尧. Mg-Zn系合金沉淀硬化研究进展[J]. 材料导报, 2020, 34(Z1): 312-315.
WANG Shimeng, YANG Wenpeng, CUI Hongbao, GUO Xuefeng, SUN Yao. Research Progress on Precipitation Hardening of Mg-Zn System Alloys. Materials Reports, 2020, 34(Z1): 312-315.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2020/V34/IZ1/312
1 彭鹏,汤爱涛,佘加,等.材料导报:综述篇,2019,33(5),1526.
2 Okamoto H. Journal of Phase Equilibria,1994,15(1),129.
3 熊庭辉,罗岚,刘勇,等.材料热处理学报,2017,38(6),1.
4 Ghosh P, Mezbahul-Islam M, Medraj M. CALPHAD: Computer Coupling of Phase Diagrams and Thermochemistry,2012,36,28.
5 Redlich O, Kister A T. Journal of Industrial and Engineering Chemistry,1948,40,341.
6 Agarwal R, Fries S G, Lukas H L, et al. Zeitschrift fur Metallkunde (Germany),1992,83(4),216.
7 Kaptay G. Calphad,2004,28(2),115.
8 王晓亮,李长荣,郭翠萍,等.金属学报,2010,46(5),575.
9 Buha J. Materials Science and Engineering: A,2008,492(1-2),11.
10 Mima G, Tanaka Y. Transactions of the Japan Institute of Metals,1971,12(5),323.
11 Gao X, Nie J F. Scripta Materialia,2007,57(7),655.
12 郭学峰,杨文朋.Mg-Zn-Y-Ce合金微细组织.中国矿业大学出版社,2012.
13 Gao X, Nie J F. Scripta Materialia,2007,56(8),645.
14 Wei L Y, Dunlop G L. Metallurgical and Materials Transactions A,1995,26(7),1705.
15 Wei L Y, Dunlop G L, Westengen H. Metallurgical and Materials Tran-sactions A,1995,26(8),1947.
16 Rosalie J M, Somekawa H, Singh A, et al. Philosophical Magazine,2010,90(24),3355.
17 Clark J B. Acta Metallurgica,1965,13(12),1281.
18 Kim W J, Hong S I, Lee K H. Metals and Materials International,2010,16(2),171.
19 Rao J C, Song M, Furuya K, et al. Journal of Materials Science,2006,41(9),2573.
20 Rokhlin L L, Oreshkina A. Fizika Metallov i Metallovedenie,1988,66(3),559.
21 Guoliang S, Dingfei Z, Xiabing Z, et al. Rare Metal Materials and Engineering,2013,42(12),2447.
22 Singh A, Tsai A P. Scripta Materialia,2007,57(10),941.
23 Singh A, Watanabe M, Kato A, et al. Materials Science and Engineering: A,2004,385(1-2),382.
24 Singh A, Nakamura M, Watanabe M, et al. Scripta Materialia,2003,49(5),417.
25 Singh A, Rosalie J M, Somekawa H, et al. Philosophical Magazine Letters,2010,90(9),641.
26 Langelier B, Korinek A, Donnadieu P, et al. Materials Characterization,2016,120,18.
27 刘洋,谢骏,郭雪锋.铝加工,2010,194(3),20.
28 麻彦龙.高强度变形镁合金ZK60合金相的控制与成分优化.硕士学位论文,重庆大学,2004.
29 Jianhui L, Wenbo D U, Shubo L I, et al. Journal of Rare Earths,2009,27(6),1042.
30 Rosalie J M, Somekawa H, Singh A, et al. Journal of Alloys and Compounds,2013,550,114.
31 Park W W, You B S, Moon B G, et al. Science and Technology of Advanced Materials,2001,2(1),73.
32 Nie J F, Muddle B C. Scripta Materialia,1997,37(10),1475.
33 Bettles C J, Gibson M A, Venkatesan K. Scripta Materialia,2004,51(3),193.
34 Mendis C L, Oh-Ishi K, Hono K. Scripta Materialia,2007,57(6),485.
35 Bhattacharjee T, Mendis C L, Oh-ishi K, et al. Materials Science and Engineering: A,2013,575,231.
36 Langelier B, Sha G, Korinek A, et al. Materials & Design,2017,119,290.
37 Buha J. Materials Science and Engineering: A,2008,491(1-2),70.
38 Buha J. Acta Materialia,2008,56(14),3533.
39 Buha J. Materials Science and Engineering: A,2008,492(1-2),293.
40 Buha J. Journal of Materials Science,2008,43(4),1220.
[1] 郭德双, 王登魁, 王新伟, 孟兵恒, 方铉, 房丹, 魏志鹏. 氢气退火对ITO纳米颗粒能带结构的影响[J]. 材料导报, 2020, 34(Z1): 26-28.
[2] 齐美丽, 梅凤策, 黄浩, 崔凤坤. 一步法合成锶离子掺杂羟基磷灰石多孔微球[J]. 材料导报, 2020, 34(Z1): 63-65.
[3] 陈姝敏, 吴迪, 何文浩, 陈勇. 银纳米粒子负载的石墨烯基环氧树脂复合材料的制备及性能[J]. 材料导报, 2020, 34(Z1): 503-506.
[4] 闫敬明, 黎平, 左孝青, 周芸, 罗晓旭. Al-Ti-B晶粒细化剂研究进展:细化机理及第二相控制[J]. 材料导报, 2020, 34(9): 9152-9157.
[5] 吴坚, 李建营, 李绍敏, 刘昊. 均匀沉淀法助力Li2ZrO3包覆LiNi0.85Co0.1Mn0.05O2提升电化学性能[J]. 材料导报, 2020, 34(6): 6015-6019.
[6] 李振团, 柴锋, 罗小兵, 张正延, 杨才福, 苏航. 时效温度对Cu沉淀强化超高强海工钢力学性能的影响[J]. 材料导报, 2020, 34(6): 6132-6137.
[7] 徐允, 张兆春, 郭海波, 谢耀平. 铟-镧系元素(La,Ce,Pr和Nd)金属间化合物磁学和热力学性质的第一性原理计算[J]. 材料导报, 2020, 34(2): 2093-2099.
[8] 苏小虎, 栗卓新, 马思鸣, 李红, 张天理, KIM Hee Jin. 氧含量及夹杂物对高强钢金属芯焊丝E120C-K4熔敷金属冲击韧性的影响[J]. 材料导报, 2020, 34(11): 11049-11052.
[9] 晁代义, 孙有政, 刘晓滕, 李兴东, 李维建, 吕正风, 程仁策. Cu元素含量对Al-Zn-Mg-Cu系合金析出行为的影响[J]. 材料导报, 2019, 33(Z2): 402-405.
[10] 展红全, 邓册, 吴传琦, 李小红, 谢志鹏, 汪长安. 新颖十二面体钛酸钡纳米晶体的水热生长机理[J]. 材料导报, 2019, 33(z1): 98-101.
[11] 王亚军, 郭梁, 李泽雪. 一步沉淀法制备三维分等级花状α-Bi2O3微球及其光性能[J]. 材料导报, 2019, 33(8): 1257-1261.
[12] 王一唱, 曹玲飞, 吴晓东, 邹衍, 黄光杰. 石油钻杆用7xxx系铝合金微观组织和性能的研究进展[J]. 材料导报, 2019, 33(7): 1190-1197.
[13] 张理元, 由耀辉, 刘义武, 阮尚全. 无机沉淀胶溶法制备钛锂离子筛及其吸附性能研究[J]. 材料导报, 2019, 33(24): 4056-4061.
[14] 马容, 张兆春, 郭海波, 谢耀平. 锂氦在钨中的行为及其对钨力学和热力学性质影响的第一性原理研究[J]. 材料导报, 2019, 33(24): 4164-4169.
[15] 姜楠, 张亮, 熊明月, 赵猛, 徐恺恺. 电子封装无铅软钎焊技术研究进展[J]. 材料导报, 2019, 33(23): 3862-3875.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed