Please wait a minute...
材料导报  2023, Vol. 37 Issue (10): 21100124-8    https://doi.org/10.11896/cldb.21100124
  金属与金属基复合材料 |
铝合金基材表面耐磨性能强化研究现状
韩冰源1,2, 高祥涵1, 杜文博2, 雷卫宁1, 李少松3, 丛孟启1, 杭卫星1, 杜伟1, 朱胜2,*
1 江苏理工学院汽车与交通工程学院,江苏 常州 213001
2 陆军装甲兵学院装备再制造技术国防科技重点实验室,北京 100072
3 中国航天员科研训练中心人因工程重点实验室,北京 100094
Technological Advances in Strengthening the Surface Wear Resistance of Aluminum Alloys Substrate
HAN Bingyuan1,2, GAO Xianghan1, DU Wenbo2, LEI Weining1, LI Shaosong3, CONG Mengqi1, HANG Weixing1, DU Wei1, ZHU Sheng2, *
1 School of Automotive and Traffic Engineering, Jiangsu University of Technology, Changzhou 213001, Jiangsu, China
2 National Key Laboratory for Remanufacturing, Academy of Army Armored Forces, Beijing 100072, China
3 National Key Laboratory for Human Factors Engineering, China Astronaut Research and Training Center, Beijing 100094, China
下载:  全 文 ( PDF ) ( 20278KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 铝合金材料具有密度低、强度高、易加工等优点,已被广泛应用于汽车和航空航天等领域。为了延长铝合金零件在磨损、腐蚀等环境下的服役寿命,目前开发了众多先进的表面工程技术,实现了对铝合金基体的性能强化。基于此,本文综述了等离子喷涂、电弧喷涂、火焰喷涂、激光重熔、氩弧重熔、冷喷涂、电火花沉积、激光熔覆、微弧氧化等九种表面技术对铝合金处理以强化耐磨性能的研究工作。大量研究发现,这些表面技术均在一定程度上提高了铝合金基体的耐磨性能。例如,等离子喷涂涂层可有效减轻高温条件下基体的磨损;重熔技术制备的涂层比喷涂涂层具有更高硬度和更优异的耐磨性能;采用硬质颗粒的冷喷涂技术制备的涂层具有显著提高的显微硬度;电火花沉积技术制备的沉积层内部均匀分布着高强度枝蔓状的Si相,能够极大地减小基体的摩擦系数。同时,本文总结了以上技术的优缺点及适用范围。例如,热喷涂效率高但易造成热应力集中,导致涂层与基体之间的结合强度降低;氩弧重熔在低熔点和易蒸发的金属和合金上重熔困难;激光重熔可消除大部分孔隙及夹杂的氧化物,但设备成本较高。最后,本文从采用多种技术复合处理、优化涂层工艺参数、加强新技术研发等方面,对未来铝合金基材表面耐磨性能强化的研究方向进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
韩冰源
高祥涵
杜文博
雷卫宁
李少松
丛孟启
杭卫星
杜伟
朱胜
关键词:  铝合金  表面工程  耐磨涂层  热喷涂  重熔    
Abstract: Characterized by low density, high strength and easy processing, aluminum (Al) alloy materials have already been used in various industrial applications, including automobile, aerospace, etc. Many surface engineering technologies have been developed to tailor the properties of Al alloys for improving their service life in the wear and corrosion environment. Based on this, the research work of nine surface technologies such as plasma spraying, arc spraying, flame spraying, laser remelting, argon arc remelting, cold spraying, electric spark deposition, laser cladding, micro arc oxidation on aluminum alloy treatment to strengthen the wear resistance is summarized in this paper. Related works reported that these technologies improved the wear resistance of the Al alloy matrix to some extent. For example, plasma-sprayed coatings can effectively reduce substrate wear at high temperatures. The coating prepared by remelting technology has higher hardness and better wear resistance than the spray coating. The cold sprayed coatings using hard particles exhibit remarkably enhanced microhardness. In the deposits prepared by EDM, the uniformly distributed Si phases forming a tendril-like structure can greatly reduce the friction coefficient of the matrix, because they exhibit high strength. Meanwhile, this paper summarizes the merits and demerits of the mentioned technologies and their applicability. For instance, the thermal spray is efficient but easy to bring about thermal stress concentration, leading to a reduced bonding strength between coating and matrix. The argon arc remelting is inappropriate to tailor the low-melting-point evaporable metals and alloys. By comparison, laser remelting can diminish the porosity and oxide inclusions, but its equipment cost too much. Finally, this paper offers a prospect for strategies of compounding technology treatment, process optimization and new technology research & development to further improve wear resistance of Al alloys.
Key words:  aluminum alloy    surface engineering    wear resistance    thermal spraying    remelting
出版日期:  2023-05-25      发布日期:  2023-05-23
ZTFLH:  TG17  
基金资助: 江苏省自然科学基金(BK20191036); 基础研究项目(JCKY61420051911)
通讯作者:  *朱胜,再制造技术国家重点实验室主任、教授、博士研究生导师,中国机械工程学会常务理事,再制造学会常务副主任兼秘书长,增材制造(3D打印)学会副主任,世界再制造峰会组织常任联合主席。获国家科技进步二等奖1项,获授权发明专利40余项。出版专著15部,发表论文150余篇。zusg@sina.com   
作者简介:  韩冰源,江苏理工学院汽车与交通工程学院副教授、硕士研究生导师。2013年获东北林业大学载运工具运用工程专业工学博士学位。主要从事报废汽车绿色拆解与零部件再制造的研究工作。发表相关论文30余篇,其中SCI收录9篇,EI收录20余篇;授权发明专利10余项;以副主编身份参编教材7部。
引用本文:    
韩冰源, 高祥涵, 杜文博, 雷卫宁, 李少松, 丛孟启, 杭卫星, 杜伟, 朱胜. 铝合金基材表面耐磨性能强化研究现状[J]. 材料导报, 2023, 37(10): 21100124-8.
HAN Bingyuan, GAO Xianghan, DU Wenbo, LEI Weining, LI Shaosong, CONG Mengqi, HANG Weixing, DU Wei, ZHU Sheng. Technological Advances in Strengthening the Surface Wear Resistance of Aluminum Alloys Substrate. Materials Reports, 2023, 37(10): 21100124-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21100124  或          http://www.mater-rep.com/CN/Y2023/V37/I10/21100124
1 Li Z Q, Li S, Duan T Y, et al. Material Development and Application, 2020, 35(3), 57 (in Chinese).
李志强, 李晟, 段天应, 等. 材料开发与应用, 2020, 35(3), 57.
2 Vignesh R, Padmanaban A. Materials Today:Proceedings, 2018, 5, 90.
3 Chen Y F. Study on repair technology of aluminum alloy automobile body plug welding. Master's Thesis, Southwest University of Science and Technology, China, 2019 (in Chinese).
陈元富. 铝合金汽车车身塞焊修复工艺研究. 硕士学位论文, 西南科技大学, 2019.
4 Rao Y Q, Wang Q, Daisuke A, et al. Surface & Coatings Technology, 2020, 383, 113.
5 Kong L C, Feng S Q, Dong T S, et al. Light Alloy Processing Technology, 2021, 49(4), 54(in Chinese).
孔令晨, 冯胜强, 董天顺, 等. 轻合金加工技术, 2021, 49(4), 54.
6 Chen S Y, Ma G Z, Wang H D, et al. Surface & Coatings Technology, 2018, 344, 45.
7 Ranjan A, Ialam A, Pathak M, et al. Vacuum, 2019, 168, 108.
8 Jia B, Pan F S, Chen C J. Surface Technology, 2020, 49(8), 55 (in Chinese).
贾碧, 潘复生, 陈春江. 表面技术, 2020, 49(8), 55.
9 Tyagi A, Pandey S M, Murtaza Q, et al. Materials Today:Proceedings, 2020, 25, 759.
10 Cao H S, Liu F J, Li H, et al. Diamond and Related Materials, 2021, 50, 95.
11 Hu Y J, Li M, Liu Y P, et al. Hot Working Process, 2019, 48(6), 141 (in Chinese).
胡艳娇, 李敏, 刘宇平, 等. 热加工工艺, 2019, 48(6), 141.
12 Pal S, Deore A, Choudhary A, et al. Materials Science and Engineering, 2017, 263, 62.
13 Vaibhav K B, Ramesh M. Transactions of the Indian Institute of Metals, 2018, 71, 51.
14 Naveena B, Keshavamurthy R, Sekhar N. Silicon, 2019, 11, 225.
15 Wang Q, Rui X, Wang Q J, et al. Surface & Coatings Technology, 2019, 367, 57.
16 He L, Tan Y, Wang X L, et al. Applied Surface Science, 2014, 314, 47.
17 Daram P, Munroe R, Banjongprasert C. Surface & Coatings Technology, 2020, 10, 391.
18 Liu Z W. Study on process parameter optimization and performance of arc spraying Zn-Al coating. Master's Thesis, Guangdong University of Technology, China, 2019(in Chinese).
刘正卫. 电弧喷涂锌铝涂层工艺参数优化及性能研究. 硕士学位论文, 广东工业大学, 2019.
19 Wu D, Fan Z S, Yang Y. Materials Science Forum, 2019, 94, 499.
20 Munoz D P, Marulanda J L, Tristancho J L. Dyna, 2020, 87, 22.
21 Lyu X W. Study on corrosion behavior and residual stress of arc spraying coatings. Master's Thesis, China University of Petroleum, China, 2017 (in Chinese).
吕显威. 电弧喷涂涂层的腐蚀行为及残余应力研究. 硕士学位论文, 中国石油大学, 2017.
22 Xi X, Xia Y Q, Cao Z F, et al. China Mechanical Engineering, 2017, 28(2), 215(in Chinese).
席翔, 夏延秋, 曹正锋, 等. 中国机械工程, 2017, 28(2), 215.
23 Wang J X, Liu J S. International Journal of Minerals, Metallurgy and Materials, 2014, 21, 469.
24 Li Q L, Luo H, Song P, et al. Metal Heat Treatment, 2017, 42(6), 6(in Chinese).
李乔磊, 罗恒, 宋鹏, 等. 金属热处理, 2017, 42(6), 6.
25 Li Q L, Song P, Ji Q, et al. Surface & Coatings Technology, 2019, 374, 70.
26 Li H Y, Liu H, Zhang X J, et al. Journal of Chemical Industry, 2021, 12(5), 1(in Chinese).
李海燕, 刘欢, 张秀菊, 等. 化工学报, 2021, 12(5), 1.
27 Donadei V, Koiyuluoto H, Sarlin E, et al. Surface and Coatings Techno-logy, 2020, 403, 90.
28 Xin W, Wang Y J, Wei S C, et al. Journal of Engineering Science, 2021, 43(2), 170(in Chinese).
辛蔚, 王玉江, 魏世丞, 等. 工程科学学报, 2021, 43(2), 170.
29 Hutsayluk V, Student M, Zadorozhna K, et al. Journal of Materials Research and Technology, 2020, 9, 20.
30 Jamshidi R, Bayat O, Heidarpour A. Surface and Coatings Technology, 2019, 358, 1.
31 Han F H, Chang X, Zhang X B, et al. Electroplating and Environmental Protection, 2014, 34(2), 32(in Chinese).
韩付会, 昌霞, 张小彬, 等. 电镀与环保, 2014, 34(2), 32.
32 Lakshmi S G, Reddy G M, Roy M. Transactions of the Indian Institute of Metals, 2018, 55, 62.
33 Wang J H, Zhang Z M. Metal Heat Treatment, 2019, 44(5), 193 (in Chinese).
王江慧, 张治民. 金属热处理, 2019, 44(5), 193.
34 Dorfman M R. Handbook of environmental degradation of materials, William Andrew Publishing, China, 2018, pp. 469.
35 Xin W, Wang Y J, Wei S C, et al. Journal of Engineering Science, 2021, 20(2), 1(in Chinese).
辛蔚, 王玉江, 魏世丞, 等. 工程科学学报, 2021, 20(2), 1.
36 Jin Z A, Zhu L N, Liu M, et al. Surface Technology, 2019, 48(10), 220 (in Chinese).
靳子昂, 朱丽娜, 刘明, 等. 表面技术, 2019, 48(10), 220.
37 Fu L, Chen X M, Zhao J, et al. Hot Working Process, 2021, 59(6), 1(in Chinese).
伏利, 陈小明, 赵坚, 等. 热加工工艺, 2021, 59(6), 1.
38 Ma L, Zhang Y M. Surface Technology, 2016, 45(4), 218 (in Chinese).
马力, 张亚明. 表面技术, 2016, 45(4), 218.
39 Zhou X K. Effect of argon arc remelting on microstructure and properties of Ni-based plasma sprayed coatings. Master's Thesis, Hebei University of Technology, China, 2018 (in Chinese).
周秀锴. 氩弧重熔对Ni基等离子喷涂层组织及性能的影响. 硕士学位论文, 河北工业大学, 2018.
40 Dong T S, Zheng X D, Meng H J, et al. Surface Technology, 2018, 47(12), 155 (in Chinese).
董天顺, 郑晓东, 孟宏杰, 等. 表面技术, 2018, 47(12), 155.
41 Xu C K. Basic research on laser remelting Al2O3-TiO2 ceramic coating by plasma spraying. Master's Thesis, Xinjiang university, China, 2018 (in Chinese).
徐承凯. 等离子喷涂激光重熔Al2O3-TiO2陶瓷涂层基础研究. 硕士学位论文, 新疆大学, 2018.
42 Dong T S, Zheng X, Li G, et al. Journal of Engineering Materials and Technology, 2018, 140, 55.
43 Zhang G D, Zheng F, Gong Z, et al. Electric Welding Machine, 2018, 48(5), 85(in Chinese).
张国栋, 郑飞, 龚卓, 等. 电焊机, 2018, 48(5), 85.
44 Wang X, Feng Y, Zhao L H, et al. Light Alloy Processing Technology, 2020, 48(1), 40 (in Chinese).
王旭, 冯阳, 赵利辉, 等. 轻合金加工技术, 2020, 48(1), 40.
45 He W. Study on inhibition mechanism of micro-defects of Fe-based Ni/WC coating by laser remelting process parameters. Master's Thesis, Jiangxi University of Science and Technology, China, 2018 (in Chinese).
何文. 激光重熔工艺参数对喷涂Fe基Ni/WC涂层微观缺陷的抑制机制研究. 硕士学位论文, 江西理工大学, 2018.
46 Liang R Y, Huang C P, Hao H W, et al. Journal of Materials Research and Technology, 2020, 60, 33.
47 Wang J G, Gao S Y, Chen X S, et al. Chinese Journal of Lasers, 2021, 59(1), 1 (in Chinese).
王建刚, 高士友, 陈旭升, 等. 中国激光, 2021, 59(1), 1.
48 Wang J G, Gao S Y, Chen X S, et al. China Laser, 2020, 47(4), 72 (in Chinese).
王建刚, 高士友, 陈旭升, 等. 中国激光, 2020, 47(4), 72.
49 Chen S X, Brodan R, Justin D, et al. Journal of Manufacturing Processes, 2018, 32, 56.
50 Liu M, Chen S Y, Ma G Z, et al. Journal of Mechanical Engineering, 2020, 56(10), 64(in Chinese).
刘明, 陈书赢, 马国政, 等. 机械工程学报, 2020, 56(10), 64.
51 Wang Q, Han P, Yin S, et al. Coatings, 2021, 11, 206.
52 Song K Q, Cong D L, He Q B, et al. Equipment Environmental Enginee-ring, 2019, 16(8), 65 (in Chinese).
宋凯强, 丛大龙, 何庆兵, 等. 装备环境工程, 2019, 16(8), 65.
53 Su J, Kang J, Yue W, et al. Materials Science and Technology, 2019, 35, 1908.
54 Xu Y X, Li W Y, Qu L Z, et al. Journal of Materials Science & Technology, 2021, 68, 93.
55 Yang K, Li W, Niu P, et al. Journal of Alloys and Compounds, 2018, 736, 115.
56 Qiu X, Wang J, Tang J, et al. Surface and Coatings Technology, 2018, 350, 391.
57 Zhang Z C, Liu F C, Han E H. Surface and Coatings Technology, 2020, 44, 39.
58 Huang G S, Fu W, Ma L, et al. Surface Engineering, 2019, 35, 233.
59 Geng M Z. Microstructure and properties of Ti(C, N) and WC-Ni based ceramic coatings deposited by electric spark deposition. Master's Thesis, Jilin university, China, 2020 (in Chinese).
耿铭章. 电火花沉积Ti(C, N)和WC-Ni基金属陶瓷涂层的组织及性能研究. 硕士学位论文, 吉林大学, 2020.
60 Paola L, Gilda R, Giuseppe C. Applied Sciences, 2017, 7, 22.
61 Zhang Y, Li L, Chang Q, et al. Surface Technology, 2021, 50(1), 150(in Chinese).
张勇, 李丽, 常青, 等. 表面技术, 2021, 50(1), 150.
62 Guo F, Su X J, Li P, et al. Journal of Welding, 2012, 33(4), 101(in Chinese).
郭锋, 苏勋家, 李平, 等. 焊接学报, 2012, 33(4), 101.
63 Wang W F, Chen J, Xu X T, et al. Journal of Materials Heat Treatment, 2013, 34(6), 120 (in Chinese).
王维夫, 陈军, 徐贤统, 等. 材料热处理学报, 2013, 34(6), 120.
64 Li X, Zhang C H, Shanhzad M, et al. Laser Technol, 2019, 114, 209.
65 Zhu Y, Liu X B, Liu Y F, et al. Surface & Coatings Technology, 2021, 424, 58.
66 Li Y X, Zhang P F, Bai P K, et al. Surface & Coatings Technology, 2018, 334, 88.
67 Ding H H, Mu X P, Zhu Y, et al. Wear, 2022, 5, 488.
68 Wang G, Liu X B, Liu Y F, et al. Materials Engineering, 2021, 11(1), 105 (in Chinese).
王港, 刘秀波, 刘一帆, 等. 材料工程, 2021, 11(1), 105.
69 Li X J, Zhang M, Wen S, et al. Surface & Coatings Technology, 2020, 44, 394.
70 Torres H, Slawik S, Gachot C, et al. Surface & Coatings Technology, 2018, 101, 337.
71 Jiang H Z, Li Z Y, Feng T, et al. Acta Metallurgica Sinica, 2021, 34, 495.
72 Kaseem M, Choe H C. Journal of Alloys and Compounds, 2021, 192, 109.
73 Xin W, Wang Y J, Wei S C, et al. Journal of Engineering Science, 2021, 43(3), 311(in Chinese).
辛蔚, 王玉江, 魏世丞, 等. 工程科学学报, 2021, 43(3), 311.
74 Yang W Y. Metallurgical Industry Management, 2020, 10(7), 65(in Chinese).
杨文岳. 冶金管理, 2020, 10(7), 65.
[1] 陈海燕, 王超, 潘美诗, 吉西西, 曾越, 安义博, 邹燕成. Zn-Al合金超声空化数值模拟和细晶强化机理研究[J]. 材料导报, 2023, 37(7): 21090048-6.
[2] 刘文憬, 李元东, 宋赵熙, 毕广利, 杨昊坤, 曹杨婧. Sr+Er复合变质对AlSi10MnMg合金微观组织、导热及力学性能的影响[J]. 材料导报, 2023, 37(6): 21090239-7.
[3] 段成红, 池瀚林, 罗翔鹏, 宫鹏杰. 激光熔化沉积稀释率对重熔行为与致密度的影响[J]. 材料导报, 2023, 37(6): 21090124-8.
[4] 张忠科, 蒋常铭, 李轩柏, 熊建强, 童辉. 汽车用铝钢无匙孔搅拌摩擦点焊接头组织及界面特征研究[J]. 材料导报, 2023, 37(5): 21070281-6.
[5] 谭国龙, 白宇, 刘明, 黄艳斐, 王海斗, 马国政. 热喷涂用丝材及其喷涂工艺的研究进展[J]. 材料导报, 2023, 37(5): 21030041-9.
[6] 李丹, 王启伟, 韩国峰, 张保国, 朱胜, 李卫. 横向交变磁场对铝合金电弧增材成形组织与性能的影响[J]. 材料导报, 2023, 37(4): 21050158-6.
[7] 蔡达, 王立世, 胡心彬. AA5052铝合金/AZ31B镁合金搅拌摩擦焊接头的腐蚀行为研究[J]. 材料导报, 2023, 37(4): 21040318-7.
[8] 杨东辉, 唐帅, 吴子彬, 秦克, 张海涛, 崔建忠, Hiromi Nagaumi. 高锌铝合金合金化和加工工艺的研究现状及发展趋势[J]. 材料导报, 2023, 37(2): 21010126-6.
[9] 金玉花, 邢逸初, 周子正, 吴博. 喷丸改性对7050铝合金FSW接头性能的影响[J]. 材料导报, 2023, 37(10): 21070253-5.
[10] 肖述广, 谢志雄, 陈卓, 陈琪, 董仕节, 解剑英. 薄壁3003铝合金管高频感应焊焊接接头微观组织及力学性能研究[J]. 材料导报, 2023, 37(1): 21080147-6.
[11] 黄智恒, 薛松柏, 王博, 张帆, 龙伟民. Sm对SAl 4043铝合金焊丝的组织、性能及氢含量的影响[J]. 材料导报, 2023, 37(1): 21080231-6.
[12] 张华炜, 刘悦, 范同祥. 铸造耐热铝合金的研究进展及展望[J]. 材料导报, 2022, 36(2): 20120048-9.
[13] 卢博, 李安敏, 饶宇, 汪林忠, 左天辰, 胡杨. 稀土Y及热处理对6016铝合金组织与性能的影响[J]. 材料导报, 2022, 36(19): 21070110-8.
[14] 于晓全, 樊丁, 黄健康. 焊丝成分对铝/钢电弧辅助激光熔钎焊接头组织及力学性能的影响[J]. 材料导报, 2022, 36(18): 21050207-5.
[15] 李帅贞, 韩晓辉, 吴来军, 刘裕航, 王鹏, 宋晓国, 檀财旺. 层道排布对6005A铝合金MIG焊接头微观组织及力学性能的影响[J]. 材料导报, 2022, 36(17): 21060094-5.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed