Please wait a minute...
材料导报  2023, Vol. 37 Issue (5): 21030041-9    https://doi.org/10.11896/cldb.21030041
  金属与金属基复合材料 |
热喷涂用丝材及其喷涂工艺的研究进展
谭国龙1,2, 白宇1,*, 刘明2,*, 黄艳斐2, 王海斗2,3, 马国政2
1 西安交通大学金属材料强度国家重点实验室,西安 710049
2 陆军装甲兵学院装备再制造技术国防科技重点实验室,北京 100072
3 陆军装甲兵学院机械产品再制造国家工程研究中心,北京 100072
Research Progress of Wire for Thermal Spraying and Its Spraying Technology
TAN Guolong1,2, BAI Yu1,*, LIU Ming2,*, HUANG Yanfei2, WANG Haidou2,3, MA Guozheng2
1 State Key Laboratory of Metal Material Strength, Xi 'an Jiaotong University,Xi'an 710049,China
2 National Key Lab for Remanufacturing, Army Academy of Armored Forces, Beijing 100072, China
3 National Engineering Research Center for Remanufacturing, Army Academy of Armored Forces, Beijing 100072, China
下载:  全 文 ( PDF ) ( 15777KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 热喷涂技术是通过喷涂粉末或丝材状态的原材料在基体表面得到具有耐高温、耐腐蚀、耐磨损等性能的涂层,从而达到对基体的保护作用。热喷涂粉末材料范围广泛,包括金属、非金属和陶瓷等,但是其生产成本高,利用率低,而且涂层沉积速率慢,喷涂设备复杂。相比之下,丝材展现出了很大的优势,一方面丝材生产成本低,材料利用率高,涂层沉积速率快;另一方面,粉芯丝材的出现解决了陶瓷材料难以制成丝状以及实心丝材成分难以调控的问题,极大地促进了丝材喷涂工艺的发展。
目前,丝材喷涂工艺主要有电弧喷涂、丝材火焰喷涂以及等离子转移弧喷涂,其中电弧喷涂和火焰喷涂工艺成熟,在喷涂粉芯丝材和实心丝材方面得到了广泛的应用,但是制备的涂层氧化严重,孔隙率高;等离子转移弧喷涂作为新的丝材喷涂工艺,制备的涂层氧化程度小,孔隙率低,涂层质量好。通过研究喷涂过程中丝材熔融机理和熔滴特性来改进喷涂工艺和设计新型喷涂技术成为提高涂层质量两种主要途径。
本文综述了近年来热喷涂所用丝材的研究进展,以及涂层的耐腐蚀、耐高温和耐磨损性能;介绍了丝材火焰喷涂、电弧喷涂和等离子转移弧喷涂的优缺点;对喷涂过程中实心丝材和粉芯丝材的熔化和雾化行为以及粒子的形成进行了归纳总结,以期为后续研究新型丝材以及优化丝材喷涂工艺提供理论指导。最后展望了热喷涂用丝材和丝材喷涂工艺的发展方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
谭国龙
白宇
刘明
黄艳斐
王海斗
马国政
关键词:  热喷涂  实心丝材  粉芯丝材  丝材喷涂技术  熔化和雾化行为    
Abstract: Thermal spraying technology is to spray powder or wire raw materials to obtain a coating with high temperature resis-tance, corrosion resis-tance, abrasion resistance, so as to achieve the protection of the substrate. Thermal spraying powder materials have a wide range, including metals, non-metals and ceramics, but its disadvantages are the high production cost, the low utilization rate and the low coating deposition rate. In contrast, wire materials have shown great advantages. On the one hand, the production cost of wire is low, the material utilization rate is high, and the coating deposition rate is fast. On the other hand, the emergence of powder cored wire solved the problem that ceramic materials are difficult to make wire, while the composition of solid wire is difficult to control, which greatly promoted the development of wire spraying process.
At present, wire spraying technology mainly includes arc spraying, wire flame spraying and plasma transfer arc spraying. Arc spraying and flame spraying technology are mature, which have been widely used to spray powder core wire and solid wire. However, the prepared coating is oxidized seriously and has high porosity. Plasma transfer arc spraying as a new wire spraying process, the prepared coating has low oxidation degree, low porosity and good quality. Two main ways to improve the coating quality are to improve the spraying process and design new spraying technology by studying the melting mechanism and droplet characteristics of wire during the spraying process.
This article summarizes the research progress of wires used in thermal spraying in recent years, as well as the corrosion resistance, high temperature resistance and abrasion resistance of the corresponding coatings. The advantages and disadvantages of wire spraying, arc spraying and plasma transfer arc spraying are introduced. The melting and atomizing behavior of solid and cored wire as well as the formation of particles during wire spraying process are summarized in order to provide theoretical guidance for the subsequent research of new wire and optimization of wire spraying process. Finally, the development direction of wire and wire spraying technology for thermal spraying is prospected.
Key words:  thermal spraying    solid wire    powder core wire    wire spraying technology    melting and atomizing behavior
出版日期:  2023-03-10      发布日期:  2023-03-14
ZTFLH:  TB43  
基金资助: 国家自然科学基金(52075542;52130509;52105235)
通讯作者:  *刘明,中国人民解放军陆军装甲兵学院装备再制造技术国防科技重点实验室助理研究员。2001年7月本科毕业于陆军装甲兵学院,2018年12月在陆军装甲兵学院装备保障与再制造系取得博士学位。长期从事表面涂层、等离子喷涂方面的研究工作,先后主持或参与国家级及军队级科研项目10余项,授权国家(国防)发明专利10余项,发表论文40余篇。byxjtu@mail.xjtu.edu.cn
hzaam@163.com   
作者简介:  谭国龙,本科毕业于江苏大学材料学院复合材料与工程专业,现为西安交通大学材料学院金属材料强度国家重点实验室硕士研究生,在白宇教授的指导下进行研究。目前主要研究的领域为超音速等离子喷涂技术。
引用本文:    
谭国龙, 白宇, 刘明, 黄艳斐, 王海斗, 马国政. 热喷涂用丝材及其喷涂工艺的研究进展[J]. 材料导报, 2023, 37(5): 21030041-9.
TAN Guolong, BAI Yu, LIU Ming, HUANG Yanfei, WANG Haidou, MA Guozheng. Research Progress of Wire for Thermal Spraying and Its Spraying Technology. Materials Reports, 2023, 37(5): 21030041-9.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21030041  或          http://www.mater-rep.com/CN/Y2023/V37/I5/21030041
1 Kamal S, Jayaganthan R, Prakash S. Surface and Coatings Technology, 2009, 203(8), 1004.
2 Hsiung J C, Tzeng J, Kung K. Life Science Journal, 2013, 10(2), 457.
3 Huang J, Liu Y, Yuan J H. Journal of Thermal Spray Technology, 2014, 23(4), 676.
4 Wu Y Z, Zhang D. Optics and Laser Technology, 2019, 118, 115.
5 Li X F. Metal Working, 2010(18), 43(in Chinese).
李学锋. 金属加工(热加工), 2010(18), 43.
6 Li J H, Zhang Y L, Wang H H, et al. Journal of Alloys and Compounds, 2020, 824, 153934.
7 Azizpour M J, Tolouei-Rad M. Ceramics International, 2019, 45(11), 13934.
8 Devaraj S, Ananad B, Gibbons M, et al. Surface & Coatings Technology, 2020, 399, 126114.
9 Ghaziof S, Gao W. Applied Surface Science, 2014, 311, 635.
10 Yang L J, Zhang Y M, Zeng X D, et al. Corrosion Science, 2012, 59, 229.
11 Bonabi S F, Ashrafizadeh F, Sanati A N, et al. Journal of Thermal Spray Technology, 2018, 27(3), 524.
12 Feng S B, Jia L N, Zhang H R, et al. Rare Metal Materials and Engineering, 2019, 48(4), 1087(in Chinese).
13 Jiang Q, Miao Q, Liang W, et al. Electrochimica Acta, 2014, 115, 644.
14 Wang J X, Zheng H. Welding Digest of Machinery Manufacturing, 2015(6), 9(in Chinese).
王吉孝, 郑红. 机械制造文摘(焊接分册), 2015(6), 9.
15 Kumar S, Kumar M, Handa A. Engineering Failure Analysis, 2019, 106, 104173.
16 Long W Y, Li J H, Wu Y P, et al. Materials at High Temperatures, 2018, 36, 1.
17 Sharma V, Kumar S, Kumar M, et al. Materials Today:Proceedings, 2020, 26(Pt 3), 3397.
18 Jin Y Y, Dou C Y, Wang L. Heat Treatment of Metals, 2015, 40(16), 4(in Chinese).
金云学, 都春燕, 王磊. 金属热处理, 2015, 40(16), 4.
19 Kocaman A, Keles O. Journal of Thermal Spray Technology, 2019. 28(3), 504.
20 Sharifahmadian O, Salimijazi H R, Fathi M H, et al. Journal of Thermal Spray Technology, 2013, 22, 2.
21 Zhang Z L, Duan S H, Zhang H B, et al. Transactions of the China Welding Institution, 2010, 31(4), 17(in Chinese).
张忠礼, 段思华, 张洪兵, 等. 焊接学报, 2010, 31(4), 17.
22 Zhang S H, Li J, Zhang H B, et al. Heat Treatment, 2010, 25(5), 20(in Chinese).
张书辉, 郦剑, 刘少光, 等. 热处理, 2010, 25(5), 20.
23 Zhu Z X, Liu Y, Xu B S. Advanced Materials Research, 2010, 154-155, 1389.
24 Luo L M, Liu S G, Li J, et al. Surface & Coatings Technology, 2011, 205(11), 3411.
25 Zhu Z X, Chen D, Xu B S. Applied Mechanics and Materials, 2011, 66-68, 727.
26 Liu K R, Ma P C, Pu N W, et al. Journal of Rare Earths, 2010, 28, 378.
27 Luo X, He D Y, Zhou Z, et al. Surface Technology, 2018, 47(7), 191(in Chinese).
罗兴, 贺定勇, 周正, 等. 表面技术, 2018, 47(7), 191.
28 Fang L J, Huang J, Liu Y, et al. Surface & Coatings Technology, 2019, 357, 794.
29 Zhang Y, Gao X, Liang X, et al. Surface & Coatings Technology, 2020, 398, 126099.
30 Ppkhmurska H, Dovhunyk V, Student M, et al. Surface & Coatings Technology, 2002, 151-152, 490.
31 Xu B S, Zhu Z X, Zhang S, et al. Wear, 2004, 257(11), 1089.
32 He D Y, Fu B Y, Jiang J M, et al. Journal of Thermal Spray Technology, 2008, 17(5-6), 757.
33 Tian H L, Wang C L, Guo M Q, et al. Journal of Alloys and Compounds, 2018, 769, 998.
34 Grigorenko G M, Adeeval L I, Tunik A Y, et al. Powder Metallurgy and Metal Ceramics, 2019, 58(5-6), 312.
35 Shukla V N, Jayaganthan R, Tewari V K. Acta Metallurgica Sinica(English Letters), 2013, 26(5), 602.
36 Wu D, Fan Z S, Yang Y. Materials Science Forum, 2019, 944, 499.
37 Luo L M, Yu J, Liu S G, et al. Journal of Wuhan University of Technology-Mater. Sci. Ed. , 2010, 25(2), 243.
38 Luo L M, Liu S G, Yao J P, et al. The Chinese Journal of Nonferrous Metals, 2011, 21(11), 2852(in Chinese).
罗来马, 刘少光, 姚继蓬, 等. 中国有色金属学报, 2011, 21(11), 2852.
39 Qian L, Wu Y P, Guo W M, et al. Transactions of the China Welding Institution, 2015, 36(2), 83(in Chinese).
钱玲, 吴玉萍, 郭文敏, 等. 焊接学报, 2015, 36(2), 83.
40 Gao Y P, Liu X M, Zhao X C, et al. Ineer Mongolia Electric Technology, 2010, 28(S2), 36(in Chinese).
高云鹏, 刘晓明, 赵晓春, 等. 内蒙古电力技术, 2010, 28(S2), 36.
41 Daram P, Munroe P R, Banjongpraster C. Surface & Coatings Technology, 2020, 391, 125565.
42 Wang W, He D Y, Guo X Y, et al. Surface & Coatings Technology, 2019, 367, 173.
43 Xiao Y X, Jiang X H, Xiao Y D, et al. Procedia Engineering, 2012, 27, 1644.
44 Salas O, Rojas D, Tosaya A, et al. International Journal of Corrosion, 2012, 2012, 1.
45 Lee H S, Singh J K, Smail M A, et al. Scientific Reports, 2019, 9(1), 3399.
46 Zhu Z X, Xu B S, Chen Y X, et al. China Surface Engineering, 2011, 24(6), 58(in Chinese).
朱子新, 徐滨士, 陈永雄. 中国表面工程, 2011, 24(6), 58.
47 Ma K Z, Yang J, Wen B, et al. Thermal Spray Technology, 2015, 7(4), 42(in Chinese).
马康智, 杨杰, 文波, 等. 热喷涂技术, 2015, 7(4), 42.
48 Peng X W, Wang G H, Zhou Z, et al. Thermal Spray Technology, 2019, 11(1), 63(in Chinese).
彭修葳, 王国红, 周正, 等. 热喷涂技术, 2019, 11(1), 63.
49 Jiang B, Zhou Z, Yao H H, et al. Thermal Spray Technology, 2016, 8(1), 72(in Chinese).
姜波, 周正, 姚海华, 等. 热喷涂技术, 2016, 8(1), 72.
50 Xu W P, Xu B S, Zhang W, et al. Heat Treatment of Metals, 2005(2), 1(in Chinese).
徐维普, 徐滨士, 张伟, 等. 金属热处理, 2005(2), 1.
51 Huang J, Li J F, Zhang S J, et al. Sueface Technoloy, 2019, 48(3), 195(in Chinese).
黄杰, 李俊峰, 张守杰, 等. 表面技术, 2019, 48(3), 195.
52 Haragal R A, Chicetl D L, Cimpolesu N, et al. IOP Conference Series, Materials Science and Engineering, 2020, 877, 012020.
53 Cai H T, Jiang T, Zhou Y. Equipment Manufacturing Technology, 2014(6), 28(in Chinese).
蔡宏图, 江涛, 周勇. 装备制造技术, 2014(6), 28.
54 Li C J. Thermal Spray Technology, 2018, 10(4), 1(in Chinese).
李长久. 热喷涂技术, 2018, 10(4), 1.
55 Liu H, Liu J Q, Zhou H B, et al. Hot Working Technology, 2018, 47(6), 181(in Chinese).
刘皓, 刘嘉琪, 周好斌, 等. 热加工工艺, 2018, 47(6), 181.
56 Wang J X, Liu J S, Zhang L Y, et al. International Journal of Minerals Metallurgy and Materials, 2014, 21(5), 469.
57 Tian H L, Wang C L, Guo M Q, et al. Surface & Coatings Technology, 2019, 370, 320.
58 Ndiithi N J, Kang M, Zhu J P, et al. Coatings, 2019, 9(9), 542.
59 Li Q L, Deng C M, Li L, et al. Ceramics International, 2020, 46(5), 5946.
60 Li J. The study on application and development of thermal spray technology. Master's Thesis, Jilin University, China, 2015(in Chinese).
李君. 热喷涂技术应用与发展调研分析. 硕士学位论文, 吉林大学, 2015.
61 Deshpande S, Sampat S, Zhang H. Surface & Coatings Technology, 2006, 200(18-19), 5395.
62 Yin S, Wang X, Li W, et al. Applied Surface Science, 2012, 259, 294.
63 Silva V C, Paredes R S C. Welding International, 2018, 32(8), 550.
64 Wang C H, Chang X, Zhi Y. Hot Working Technology, 2014, 43(12), 155(in Chinese).
王春欢, 昌霞, 直妍. 热加工工艺, 2014, 43(12), 155.
65 Li X J, Liu D, Liu Z, et al. Sueface Technoloy, 2018, 47(1), 181(in Chinese).
李晓娟, 刘栋, 刘哲, 等. 表面技术, 2018, 47(1), 181.
66 Marantz D, Kowalsky K. US patent 5. 442. 153, 1995.
67 Kowalsky K, Marantz D, Cook D, et al. US patent 5. 808. 270, 1998.
68 Bobzin K, Ernst F, Richardt K, et al. Surface & Coatings Technology, 2008, 202(18), 4438.
69 Edrisy A, Perry T, Cheng Y T, et al. Wear, 2001, 251(1-12), 1023.
70 Darut G, Liao H L, Coddet C, et al. Surface & Coatings Technology, 2015, 268, 115.
71 Tillmann W, Abdulgader M, Xiao L X. Thermal Spray Technology, 2013, 5(1), 61(in Chinese).
Tillmann W, Abdulgader M, 肖立新. 热喷涂技术, 2013, 5(1), 61.
72 Wilden J, Bergmann J P, Jahn S, et al. Journal of Thermal Spray Technology, 2007, 16, 759.
73 Lunn G D, Riley M A, Mccartney D G. Journal of Thermal Spray Technology, 2017, 26(8), 1947.
74 Tillmann W, Abdulgader M. Journal of Thermal Spray Technology, 2012, 21(3-4), 706.
75 Hussary N A, Heberlein J V R. Journal of Thermal Spray Technology, 2007, 16(1), 140.
76 Vaz R F, Pukasiewicza G M, Fals H D C, et al. Coatings, 2020, 10(4), 417.
[1] 石妍, 李家正, 李杨, 韩炜. 混凝土表面热喷涂陶瓷防护涂层的可行性试验研究[J]. 材料导报, 2021, 35(Z1): 238-241.
[2] 梁秀兵, 周志丹, 张志彬, 程江波, 陈永雄. 铝基非晶材料研究与再制造应用前景[J]. 材料导报, 2021, 35(1): 1003-1010.
[3] 陈枭, 白小波, 王洪涛, 纪岗昌. 超音速火焰喷涂多尺度WC-17Co粉末制备的金属陶瓷涂层的组织结构与性能[J]. 材料导报, 2019, 33(4): 684-688.
[4] 丁述宇, 马国政, 陈书赢, 何鹏飞, 王译文, 王海斗, 徐滨士. 热喷涂成形过程热量累积行为与温度控制研究现状[J]. 材料导报, 2019, 33(21): 3644-3653.
[5] 刘健健,朱诚意,李光强. 连铸结晶器铜板表面涂镀层应用研究进展[J]. 材料导报, 2019, 33(17): 2831-2838.
[6] 王瑶, 赵雪妮, 党新安, 王旭东, 张黎, 杨建军, 何富珍, 张伟刚, 刘庆瑶. 海洋环境下钢材表面镀铝工艺的研究进展[J]. 材料导报, 2018, 32(21): 3805-3813.
[7] 周超极, 朱胜, 王晓明, 韩国峰, 周克兵, 徐安阳. 热喷涂涂层缺陷形成机理与组织结构调控研究概述[J]. 材料导报, 2018, 32(19): 3444-3455.
[8] 赵钦,马国政,王海斗,李国禄,陈书赢,周羊羊. 高熵合金涂层制备及其应用的研究进展*[J]. 《材料导报》期刊社, 2017, 31(7): 65-71.
[9] 李嘉伟, 李大玉, 顾熠鑫, 肖金坤, 张超, 张燕军. 热喷涂制备二氧化钛涂层中锐钛矿相调控的研究进展*[J]. 《材料导报》期刊社, 2017, 31(3): 26-31.
[10] 毛杰, 邓春明, 吴相彬, 邓畅光, 宋进兵, 刘敏. 不同喷涂工艺下NiCoCrAlYTa涂层的显微结构和性能*[J]. 《材料导报》期刊社, 2017, 31(16): 51-54.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed