Please wait a minute...
材料导报  2022, Vol. 36 Issue (14): 21040281-8    https://doi.org/10.11896/cldb.21040281
  无机非金属及其复合材料 |
钙铁基磷酸盐复合材料(CFP(CC))对U(Ⅵ)的吸附性能
王玉罡1,2, 张卫民1,2, 陈家鸿1,2, 郭亚丹1,2, 刘茂涵1,2, 杨梓晨2
1 东华理工大学核资源与环境国家重点实验室,南昌 330013
2 东华理工大学水资源与环境工程学院,南昌 330013
Adsorption Performance of Ca/Fe-phosphate Composites (CFP(CC)) on U(Ⅵ)
WANG Yugang1,2, ZHANG Weimin1,2, CHEN Jiahong1,2, GUO Yadan1,2, LIU Maohan1,2, YANG Zichen2
1 State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang 330013, China
2 School of Water Resources and Environmental Engineering, East China University of Technology, Nanchang 330013, China
下载:  全 文 ( PDF ) ( 6481KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 通过溶胶-凝胶法制备了新型钙铁基磷酸盐复合材料CFP(CC)。静态批实验表明,溶液pH=3、复合材料用量m=0.01 g、反应时间t=330 min的条件最有利于U(Ⅵ)的吸附。离子强度和阴、阳离子对CFP(CC)吸附U(Ⅵ)的影响实验结果表明,随着离子强度的增加,CFP(CC)对U(Ⅵ)的吸附量减小,阴、阳离子对U(Ⅵ)的吸附效果都有一定程度的影响,主要是因为这些离子与U(Ⅵ)存在着竞争吸附位点的关系。采用动力学模型和等温线模型进行拟合,结果表明,CFP(CC)对U(Ⅵ)的吸附过程符合准二级动力学模型和Langmuir吸附等温线模型,结合Dubinin-Radushkevich等温线模型分析,吸附过程主要为表面单层化学吸附,Langmuir等温线模型分析出CFP(CC)的最大理论单位吸附量为1 250 mg·g-1。热力学参数结果显示,ΔG<0、ΔH>0、ΔS>0,表明CFP(CC)对U(Ⅵ)的吸附是自发进行、吸热和熵增的过程。SEM-EDS、XRD、FTIR和XPS等表征结果显示,吸附过程以离子交换和溶解沉淀为主要机理。回收率实验结果说明钙铁基磷酸盐复合材料CFP(CC)具有良好的回收效果。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王玉罡
张卫民
陈家鸿
郭亚丹
刘茂涵
杨梓晨
关键词:  钙铁基磷酸盐复合材料  U(Ⅵ)  吸附  动力学  热力学    
Abstract: Anew Ca/Fe-phosphate composite CFP(CC) was prepared by sol-gel method. Static batch experiments show that the adsorption of U(Ⅵ) is most favoured under the condition of solution pH=3, composite dosage m=0.01 g and reaction time t=330 min. The experimental results on the effect of ionic strength and anions and cations on the adsorption of U(Ⅵ) by CFP(CC) show that the adsorption of U(Ⅵ) by CFP(CC) decreases with the increase of ionic strength and that both anions and cations have a certain degree of effect on the adsorption of U(Ⅵ), mainly because of the competition between these ions and U(Ⅵ) for the adsorption sites. From kinetic and isotherm models, the results show that the adsorption process of CFP (CC) for U(Ⅵ) conforms to the quasi-second-order kinetic model and Langmuir adsorption isotherm model. Combined with Dubinin-Radushkevich isotherm model, it is found that the adsorption process is mainly surface monolayer chemisorption. The maximum theoretical unit adsorption capacity of CFP(CC) is 1 250 mg·g-1 according to Langmuir isotherm model. The results of thermodynamic parameters are ΔG<0, ΔH>0 and ΔS>0, which indicates that the adsorption of U (VI) by CFP (CC) is a spontaneous, endothermic and entropy increasing process. The results of SEM-EDS, XRD, FTIR and XPS show that the main mechanism of adsorption is ion exchange and dissolution precipitation. The results of recovery experiment show that Ca/Fe-phosphate composite CFP(CC) has good recovery effect.
Key words:  Ca/Fe-phosphate composite    U(Ⅵ)    adsorption    dynamics    thermodynamics
发布日期:  2022-07-26
ZTFLH:  X753  
  TQ424  
基金资助: 江西省自然科学基金(20202BABL204069);国家自然科学基金(41562011);核资源与环境国家重点实验室自主基金(2020Z06)
通讯作者:  wmzhang@ecit.cn   
作者简介:  王玉罡,2019年毕业于防灾科技学院,获得地下水科学与工程学士学位;2022年毕业于东华理工大学,获得地质资源与地质工程硕士学位。发表学术论文6篇,其中以第一作者身份发表学术论文3篇(SCI收录1篇、EI收录1篇、省级期刊收录1篇)。
张卫民,博士,教授,博士研究生导师。1987年毕业于成都理工大学(成都地质学院),获得水文地质学士学位;1990年毕业于东华理工大学(华东地质学院),获得水文地质硕士学位;2007年毕业于中国地质大学(武汉),获得环境工程博士学位。主要从事水文地质、地下水污染控制与治理修复等方面的研究。主持国家级和省部级科研项目9项,科技成果获省部级科技成果二等奖1项、三等奖2项、省级教学成果二等奖1项。在国内外各种刊物上发表学术论文100余篇,其中9篇被SCI和EI收录。
引用本文:    
王玉罡, 张卫民, 陈家鸿, 郭亚丹, 刘茂涵, 杨梓晨. 钙铁基磷酸盐复合材料(CFP(CC))对U(Ⅵ)的吸附性能[J]. 材料导报, 2022, 36(14): 21040281-8.
WANG Yugang, ZHANG Weimin, CHEN Jiahong, GUO Yadan, LIU Maohan, YANG Zichen. Adsorption Performance of Ca/Fe-phosphate Composites (CFP(CC)) on U(Ⅵ). Materials Reports, 2022, 36(14): 21040281-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21040281  或          http://www.mater-rep.com/CN/Y2022/V36/I14/21040281
1 Wei Y Q, Zhang L X, Shen L, et al. Journal of Molecular Liquids, 2016, 221, 1231.
2 Song W C, Liu M C, Hu R, et al. Chemical Engineering Journal, 2014, 246, 268.
3 Selçuk Ş. Desalination and Water Treatment, 2016, 57, 23790.
4 Liu D Q, Liu Z R, Wang C F, et al. Journal of Radioanalytical and Nuclear Chemistry, 2016, 310(3), 1131.
5 Şenol Z M, Şimsek S,Ulusoy H Í,et al.Polymer Testing,2020,88,106566.
6 Aly M M, Hamza M F. Journal of Dispersion Science and Technology, 2013, 34, 182.
7 Han W, Fu F, Cheng Z, et al. Journal of Hazardous Materials, 2015, 302, 437.
8 Khan F I, Husain T, Hejazi R. Journal of Environmental Management, 2004, 71(2), 95.
9 Rad P R,Fazlali A.Journal of Water Process Engineering,2020,35,101196.
10 Bachmaf S, Merkel B J. Environmental Earth Sciences, 2011, 63, 925.
11 Gül U D, Şenol Z M, Gürsoy N, et al. Journal of Environmental Radioa-ctivity, 2019, 205-206, 93.
12 Simsek S, Ulusoy U. Reactive & Functional Polymers, 2013, 73, 73.
13 Ahmed O, Mohamed A, Hend S. Separation Science and Technology, 2018, 53(14), 2267.
14 Wang G H, Liu J S, Wang X G, et al. Journal of Hazardous Materials, 2009, 168, 1053.
15 Yang A L, Yang P, Huang C P. Journal of Radioanalytical and Nuclear Chemistry, 2017, 313, 371.
16 Tian G, Geng J X, Jin Y D, et al. Journal of Hazardous Materials, 2011, 190, 442.
17 Wang Z L, Liu Z R, Ye T Z, et al. Journal of Radioanalytical and Nuclear Chemistry, 2020, 326, 1843.
18 Mehta V S, Maillo F, Wang Z, et al. Environmental Science & Technology, 2016, 50(6), 3128.
19 Sun, Z H, Chen, D Y, Chen, B D, et al. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 547, 141.
20 Zeng H, Lu L, Gong Z H, et al. Journal of Radioanalytical and Nuclear Chemistry, 2019, 320, 165.
21 Li F B, Li X Y, Cui P. Journal of Environmental Radioactivity, 2018, 189, 24.
22 Mondal S, Hoang G, Manivasagan P, et al. Ceramics International, 2018, 44, 15735.
23 Liu M X, Dong F Q, Yan X Y, et al. Bioresource Technology, 2010, 101, 8573.
24 Li L, Ding D X, Hu N, et al. Journal of Radioanalytical and Nuclear Chemistry, 2014, 299, 681.
25 Wang B D, Zhou Y X, Li L, et al. Science of the Total Environment, 2018, 626, 219.
26 Pang H W, Wu Y H, Huang S Y, et al. Inorganic Chemistry Frontiers, 2018, 10, 2657.
27 Song S, Zhang S, Huang S Y, et al. Chemical Engineering Journal, 2019, 355, 697.
28 Yu K, Liu J X, Xie S B, et al. Materials Reports A:Review Papers, 2020, 34(12), 23020(in Chinese).
俞坤,刘金香,谢水波,等. 材料导报:综述篇,2020,34(12),23020.
29 Zhang L Z, Yi P, Fang D D, et al. Environmental Science, 2021, 42(6), 2917(in Chinese).
张立志, 易平, 方丹丹, 等. 环境科学, 2021, 42(6), 2917.
30 Abdi J, Mahmoodi N M, Vossoughi M, et al. Microporous Mesoporous Mater, 2019, 273, 177.
31 Zareh M M, Aldaher A, Soliman M, et al. Journal of Radioanalytical and Nuclear Chemistry, 2013, 295, 1153.
32 Zhang X L,Deng L C, Fang C J, et al. Environmental Science, 2019, 40(1), 300(in Chinese).
张翔凌, 邓礼楚, 方晨佳, 等. 环境科学, 2019, 40(1), 300.
33 Zhao L, Ding Z L, Sima J, et al. Chemosphere, 2017, 182, 15.
34 Li W, Liu Q, Liu J, et al. Applied Surface Science, 2017, 403, 378.
35 Yang T Z, Zhang W M, Liu H Y, et al. Journal of Radioanalytical and Nuclear Chemistry, 2019, 323(2), 1.
36 Salameh S, Khalili F I, Al-Dujaili A H, et al. International Journal of Mineral Processing, 2017, 168, 9.
37 Zou Y D, Wang X X, Wu F, et al. ACS Sustainable Chemistry & Engineering, 2016, 5 (1), 1173.
38 Kaynar U H, Cınar S, Cam Kaynar S, et al. Journal of Polymers and the Environment, 2018, 26, 2300.
39 Xia L S, Tan K X, Wang X, et al. Journal Environmental Engineering, 2013, 139, 887.
40 Chen B D, Wang J, Kong L J, et al. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 520, 612.
41 Sun Y B,Wu Z Y,Wang X X, et al. Environmental Science & Technology, 2016, 50, 4459.
[1] 汤倩茜, 陈栋航, 张春杰, 王钢, 郭利民. 沸石分子筛用于挥发性有机物吸附的研究进展[J]. 材料导报, 2022, 36(Z1): 21050144-9.
[2] 刘利, 诸力维, 彭喜林, 周洋, 张楷彬, 孙浩荻, 李晓林. 污水中非正磷酸盐处理技术研究进展[J]. 材料导报, 2022, 36(Z1): 22050093-5.
[3] 宋晓东, 陶平均. 分子动力学模拟晶向对B2-CuZr纳米晶/Cu50Zr50非晶复合材料塑性变形行为的影响[J]. 材料导报, 2022, 36(Z1): 22030197-6.
[4] 吕博, 陈连喜. 磷酸功能化空心二氧化硅的制备及其对Cd2+的吸附[J]. 材料导报, 2022, 36(9): 21030132-7.
[5] 郑棋文, 范同祥. 液/固晶面润湿性实验与模拟研究方法[J]. 材料导报, 2022, 36(9): 21010025-12.
[6] 江幸, 孔勇, 赵志扬, 沈晓冬. 球形气凝胶材料的研究进展[J]. 材料导报, 2022, 36(8): 20040032-8.
[7] 张航, 马蓉, 弓亮, 黄丽丽, 陈南春, 解庆林, 马丽丽. 硅藻基Cr(VI)表面离子印迹吸附材料的制备及其对Cr(VI)的吸附性能[J]. 材料导报, 2022, 36(8): 21010050-7.
[8] 李燕, 陈梅芹, 乔艳辉, 康新平. 废白土-花生壳生物炭吸附剂的制备及对Pb(Ⅱ) 的吸附[J]. 材料导报, 2022, 36(6): 20110276-6.
[9] 侯腾跃, 孙炎辉, 孙舒鹏, 肖瑛, 郑雁公, 王兢, 杜海英, 吴隽新. 机器学习在材料结构与性能预测中的应用综述[J]. 材料导报, 2022, 36(6): 20080205-12.
[10] 姚庆达, 梁永贤, 王小卓, 温会涛, 周华龙, 但卫华. GO/CS的结构、性能及其在水处理中的应用研究进展[J]. 材料导报, 2022, 36(4): 20110041-13.
[11] 胡世琴, 杨金辉, 杨斌, 王劲松, 周书葵, 雷增江, 骆毅. 稻壳基材料应用于水污染治理领域的研究进展[J]. 材料导报, 2022, 36(4): 20050183-11.
[12] 张琪, 冯攀, 王浩川, 邵丽静, 叶少雄, 冉千平. 混凝土中微波型主动控释胶囊的制备及释放行为[J]. 材料导报, 2022, 36(4): 20100262-7.
[13] 田继挺, 冯琦杰, 郑健, 周韦, 李欣, 梁晓波, 刘德峰. 单晶立方碳化硅辐照肿胀与非晶化的分子动力学模拟研究[J]. 材料导报, 2022, 36(2): 20100248-5.
[14] 宋学锋, 丁浩. LaCl3@Zeolite自支撑多孔吸附材料的制备及其同步脱氮除磷效果[J]. 材料导报, 2022, 36(14): 21040103-7.
[15] 郑亚亚, 罗兵辉, 汪力, 谢炜. Ag含量对Al-Mg-Si 合金时效析出行为及性能的影响[J]. 材料导报, 2022, 36(13): 20120268-5.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed