Please wait a minute...
材料导报  2022, Vol. 36 Issue (14): 21030036-11    https://doi.org/10.11896/cldb.21030036
  金属与金属基复合材料 |
原子力显微镜的工作原理及其在电化学原位测试中的应用
刘金超1,2, 崔洁1
1 华南理工大学分析测试中心,广州 510640
2 华南理工大学化学与化工学院,广州 510640
Atomic Force Microscopy: Principles and Applications in the Field of In-situ Electro-chemical Characterization
LIU Jinchao1,2, CUI Jie1
1 Analytical and Testing Center, South China University of Technology, Guangzhou 510640, China
2 School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
下载:  全 文 ( PDF ) ( 11483KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 原子力显微镜是显微分析领域常用的测试工具,通过探测探针与样品之间的相互作用获得样品表面信息,可以在真空、特定气氛以及液相环境下工作。除进行微纳尺度上的表面三维形貌测量外,原子力显微镜还可以进行电学性能、力学性能等测试。由于功能多样、工作环境灵活,原子力显微镜是原位分析的理想平台。本文综述了原子力显微镜在原位电化学腐蚀、锂离子电池界面过程以及液相中的电化学反应动力学等研究中的应用。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘金超
崔洁
关键词:  原子力显微镜  电化学  微区原位表征    
Abstract: Atomic force microscopy (AFM) is a kind of useful analytical instrument in surface micro-analysis. AFM gains information based on the inte-raction between the probe tip and sample, so that it can work in vacuum, atmosphere or liquid environment. Apart from three-dimensional topography, AFM provides information of electrical and mechanical properties in nanoscale. Nowadays, AFM is an ideal platform in the field of in-situ micro-analysis due to the versatility and the diversity of its working environment. The article summarized the applications of in-situ AFM in the fields of electrochemical corrosion, interface process in Li-ion battery and dynamics in the electrochemical reaction in solutions.
Key words:  atomic force microscopy    electrochemistry    in-situ micro-characterization
发布日期:  2022-07-26
ZTFLH:  TS205.5  
基金资助: 国家自然科学基金(51801065);广东省普通高校青年创新人才项目(2020KQNCX002)
通讯作者:  czcuijie@scut.edu.cn   
作者简介:  刘金超,2008年6月毕业于哈尔滨工业大学,获得工学学士学位;2011年在中山大学获得材料物理与化学硕士学位。现为华南理工大学在读博士研究生。目前主要研究领域为电化学及光催化过程原位表征,以第一作者身份在电化学期刊 Applied Catalysis B: Environment International Journal of Hydrogen Energy等杂志上发表论文三篇,在仪器类期刊Scanning上发表论文一篇,授权国家发明专利一项。
崔洁,2008年本科毕业于大连理工大学,2014年于华南理工大学获得工学博士学位,随后留校在分析测试中心开展微纳材料的结构设计、制备、准原位/原位结构表征及其在能源转换领域的相关应用研究工作。近年来,在JMCAJPSAPL等杂志发表论文20余篇,参与国家自然科学基金青年项目一项、横向项目三项,授权专利一项。
引用本文:    
刘金超, 崔洁. 原子力显微镜的工作原理及其在电化学原位测试中的应用[J]. 材料导报, 2022, 36(14): 21030036-11.
LIU Jinchao, CUI Jie. Atomic Force Microscopy: Principles and Applications in the Field of In-situ Electro-chemical Characterization. Materials Reports, 2022, 36(14): 21030036-11.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21030036  或          http://www.mater-rep.com/CN/Y2022/V36/I14/21030036
1 Binnig G, Quate C, Gerber C. Physical Review Letters,1986,56(9),930.
2 Garcia R, Perez R. Surface Science Reports, 2002, 47(6-8), 197.
3 Wang S, Liu Q, Li B, et al. Energy & Environmental Materials, 2018, 1(1), 28.
4 Danis L, Gateman S M, Mauzeroll J, et al. Chem Electro Chem, 2017, 4(1), 6.
5 Butt H, Cappella B, Kappl M, et al. Surface Science Reports, 2015, 59(1-6), 1.
6 Liu X, Wang D, Wang L, et al. Science Bulletin, 2015, 60(9), 839.
7 Buzolin R, Mohedano M, Hort N, et al. Material Science and Enginee-ring A, 2017, 682(1), 238.
8 Shao M. Journal of Power Sources, 2014, 270(1), 475.
9 Yang S, Shi Y, Wan L, et al. Angewandte Chemie-International Edition, 2016, 55(51), 15835.
10 Wang X, Bi X, Lu J, et al. ACS Applied Materials & Interfaces, 2018, 10(19), 16552.
11 Zhan Y, Yu H, Huang X, et al. Journal of Materials Chemistry A, 2018, 6(15), 6206.
12 Lacey S, Wan J, Hu L, et al. Nano Letter, 2015, 15(2), 1018.
13 Ni J, Li L, Lu J. ACS Energy Letters, 2018, 3(5), 1137.
14 Guo L, Wang B. Applied Surface Science, 2013, 70, 188.
15 Ornek C, Engelberg L. Corrosion Science, 2015, 99, 64.
16 Amemiya S, Bard A J, Unwin P, et al. Annual Review of Analytical Chemistry, 2008, 1, 95.
17 Wain A J. Electrochemistry Communications, 2014, 46, 9.
18 Zoski C G. Journal of the Electrochemical Society,2016,163(4),H3088.
19 Bergner S, Vatsyayan P, Matysik S, et al. Analytica Chimica Acta, 2013, 775, 1.
20 Connell M A, Wain A J. Analytical Methods, 2015, 7(17), 6983.
21 Bard A J, Faulkner L R. Electrochemical Methods: Fundamentals and Applications, John Wiley, New York, USA, 1980, pp.35.
22 Husser O, Craston D, Bard A J. Analytical Chemistry,1989,61(2),132.
23 Engstorm R, Pharr C. Analytical Chemistry, 1989, 61(19), 1099A.
24 Nellist M, Chen Y, Boettcher S W, et al. Nanotechnology, 2017, 28, 095711.
25 Patel A, Kranz C. Annual Review of Analytical Chemistry,2018,11,329.
26 Eaton P, West P. Atomic force microscopy, Oxford University Press, Oxford, 2010, pp.31.
27 Sun Hao. The Chinese manual of bruker multimode 8, 1st edition, Surface and Nanomaterials Diversion Bruker, China, 2015(in Chinese).
孙昊. Bruker Multimode 8中文操作手册, 第一版, 布鲁克纳米表面仪器部, 2015.
28 Wang X Y. Study of interfacial nanobubbles by atomic force microscopy and scanning transmission soft X-ray microscopy. Ph.D. Thesis, Ningbo University, China, 2014(in Chinese).
王兴亚. 基于原子力显微镜及透射式扫描软X射线显微成像技术的固液界面纳米气泡研究. 博士学位论文, 宁波大学, 2014.
29 Xu K, Sun W H, Li P, et al. Nanotechnology Reviews,2018,7(6),605.
30 Wang H R, Du C W. Corrosion Science and Protection Technology, 2016, 28(1), 367(in Chinese).
王慧如, 杜翠薇. 腐蚀科学与防护技术, 2016, 28(1), 367.
31 Kada G, Kienberger F, Hinterdorfer P, et al. Nano Today,2008,3,12.
32 Guo D, Xie G, Vacha M, et al. Journal of Physics D: Applied Physics, 2013, 47(1), 013001.
33 Murrel M, Welland M, Verhaverbeke S, et al. Applied Physics Letters, 1993, 62(7), 786.
34 Liu Y. Photoelectrical imaging of ferroelectric photocatalysts, Ph.D.Thesis, Lanzhou University, China, 2020(in Chinese).
刘永. 铁电光催化剂光电成像研究. 博士学位论文,兰州大学,2020.
35 Zisman W. Review of Scientific Instruments, 1932, 3, 367.
36 Nonnenmacher M, Wickramasinghe H. Applied Physics Letters, 1991, 58(25), 2921.
37 Garcia R, Perez R. Surface Science Reports, 2002, 47(6-8), 197.
38 Holscher H, Schmutz J. Dynamic force microscopy and spectroscopy using the frequency-modulation technique in air and liquid: scanning probe microscopy in nanoscience and technology, Springer-Verlag, Berlin Heidelberg, 2010, pp.3.
39 Bard A J(Author), Shao Y(Translator). Electrochemical method principles and applications(2nd edition), Chemical Industrial Press, China, 2005, pp.213(in Chinese).
Bard A J(著), 邵元华(译).电化学方法原理和应用(第二版), 化学工业出版社, 2005, pp.213.
40 Heyrovsky J, Kuta J. Principles of polarography, Elsevier, Amsterdam, 2013, pp.46.
41 Elgrishi N, Rountree K, Dempsey J, et al. Journal of Chemistry Education, 2018, 95(2), 197.
42 Bellezze T, Giuliani G, Roventi G, et al. Corrosion Science,2018,130,12.
43 Ehsani A, Mahjani M, Shiri H. et al. Journal of Colloid Interface Science, 2017, 490, 444.
44 Fu W, Zhang W. Small, 2017, 13(11), 1603525.
45 Yang Y, Liu X, Wang T, et al. Advanced Materials, 2017, 29(31), 1606922.
46 Wu J, Cai W, Shang G. Nanoscale Research Letters, 2016, 11, 223.
47 Lian P, Zhu X, Wang H, et al. Electrochimica Acta, 2010, 55(12), 3909.
48 Zhang J, Lang J, Li F, et al. Current Opinion in Electrochemistry, 2020, 22, 178.
49 Husser O, Craston D, Bard A J. Journal of the Electrochemical Society, 1989, 136(11), 3222.
50 Knittel P, Mizaikoff B, Kranz C. Analytical Chemistry, 2016,88(12), 6174.
51 Zhao W, Shen C. Ultramicroscopy, 2019, 204, 34.
52 Polcari D, Dauphin D P. Chemical Reviews, 2016, 116(22), 13234.
53 Shi X, Zhang W. Electrochimia Acta, 2020, 332, 135472.
54 Esmaeili N, Neshati J. Research on Chemical Intermediates, 2016, 42(6), 5339.
55 Jamali S, Moulton S. Corrosion Science, 2014, 86, 93.
56 Holzinger A, Steinbach C. Scanning electrochemical microscopy:(SECM): fundamentals and applications in life sciences, electrochemical strategies in detection science, Springer, Berlin, 2015, pp.125.
57 Lin T, Rapino S. Chemical Science, 2018, 9(20), 4546.
58 Zhang Q, Ye Z. Corrosion Science, 2018, 139, 403.
59 Huang Z, Wolf P,Krannsz F, et al. Microscopy Today, 2016, 24, 18.
60 Zhang Q, Liu P,Li X, et al. Electrochemistry Communications, 2018, 93, 143.
61 Fernandez J L, Bard A J. Analytical Chemistry, 2003, 75(13),2967.
62 Eckhard K, Chen X,Schumann W, et al. Physical Chemistry Chemical Physics, 2006, 8(45), 5359.
63 Singh V, Tiwari A,Nagaiah T C, et al. Journal of Materials Chemistry A, 2018, 6, 225452.
64 Marques A, Izquierdo J, Simoes A M, et al. Electrochimica Acta, 2015, 153, 238.
65 Wittstock G, Burchardt M,Zhao C, et al. Angewandte Chemie-International Edition, 2007, 46, 1584.
66 Liu L, Mandler D. The sol-gel handbook: sol-gel coatings by electrochemical deposition, Wiley-VCH, New Jersey, 2015, pp.216.
67 Giar E I, Wipf D O. Journal of Electroanalytic Chemistry, 2007, 609(2), 1474.
68 Serrapede M, Denuault G,Ball R J, et al. Analytical Chemistry, 2013, 85(17), 8341.
69 Sadewasser S, Glatzel T. Kelvin probe force microscopy, Springer-Verlag, Berlin Heidelberg, 2012, pp.194.
70 Schmutz P, Frankel G S. Journal of the Electrochemical Society, 1998, 145(7), 2285.
71 Collins L, Sergei V, Rodriguez B J, et al. Reports on Progress in Physics, 2018, 81(8), 086101.
72 rnek C, Engelberg D L. Corrosion Science, 2015, 99, 164.
73 Guo L Q, Shi X L. Corrosion Science, 2011, 53(11), 3733.
74 Guo L Q, Xu B Z. Corrosion Science, 2013, 70, 140.
75 Senoz C, Rohwerder M. Electrochimica Acta, 2011, 56(26), 95885.
76 Senoz C, Stratmann M. Corrosion Science, 2012, 58, 307.
77 Wang G, Yang X. Electrochemistry Communications, 2013, 35, 100.
78 Bairi L R, George R, Mudali U K. Corrosion Science, 2012,61, 19.
79 Hamzah E, Hussain M, Doan T, et al. Corrosion Engineering Science and Technology, 2013, 48(2), 116.
80 Nithila R, Padhy N, George R, et al. Journal of Advanced Microscopy Research, 2012, 7(2), 123.
81 Karlsson P M, Palmqvist A E. Corrosion Science, 2010, 52(4), 1103.
82 Chen Z, Huang L, Zhang G, et al. Corrosion Science. 2012, 65, 214.
83 Wang B, Du M, Zhang J, et al. Corrosion Science, 2011, 53(1), 353.
84 Qian Q. Study on the solid electrolyte interphase formation mechanism by propylene carbonate reduction. Ph. D. Thesis, Wuhan University, China, 2017(in Chinese).
钱沁莱.碳酸丙烯酯电解液中SEI膜的形成机理研究. 博士学位论文,武汉大学, 2017.
85 Cresce A,Russell S, Xu K, et al. Nano Letters, 2014, 14(3), 1405.
86 Shen C,Wang S W, Han W Q, et al. ACS Applied Materials Interfaces, 2015, 7(45), 25441.
87 Huang S Q, Shen C,Xin K Q, et al. Applied Surface Science, 2018, 441, 265.
88 An S J,Li J, Wood D L, et al. Carbon, 2016, 105, 52.
89 Yang S,Wu J, Zeng K, et al. Journal of Power Sources, 2017, 352, 9.
90 Verde M G, Baggetto L,Meng Y S, et al. ACS Nano, 2016, 10(4), 4312.
91 Zhu J,Zeng K, Liu L, et al. ACS Nano, 2013, 7(2), 1666.
92 Bhaskar A, Deepa M,Rao T, et al. ACS Applied Materials Interfaces, 2013, 5(7), 2555.
93 Chen L C, Yang Y M,Huang Z G, et al. Journal of Alloy Compounds, 2017,711,462.
94 Anju V G, Austeria M P,Sampath S, et al. Advanced Materials Interfaces, 2017,4(15), 1700151.
95 Zhou K Q, Kang M L,Wei M D, et al. Journal of Materiasl Chemistry A, 2017,5(34), 18138.
96 Yan R T, Ghilane J,Wang Q, et al. Journal of Physical Chemistry Letters, 2018, 9(3), 491.
97 Chennit K,Trasobares J, Demaille C, et al. Analytical Chemistry, 2017, 89(20), 11061.
98 Jiang J, Brunschwig C, Gokhale R, et al. ChemSusChem, 2017, 22, 4657.
99 Jones C E,Macpherson R, Unwin P, et al. ChemPhysChem, 2003, 4(2), 139.
100 Zhang Y, Huang T, Xiao Y, et al.Chinese Science Bulletin, 2021,66(34), 4466(in Chinese).
张永生,黄陀,肖毅,等. 科学通报, 2021,66(34),4466.
101 Sklyar O, Kueng A,Lunstein A, et al. Analytical Chemistry, 2005, 77, 764.
[1] 简燕, 杨文静, 杨磊, 宋绍意, 倪婕, 何银芳. 纳米多孔硅的多片制备及其性能表征[J]. 材料导报, 2022, 36(Z1): 22010200-6.
[2] 李亮星, 朱志城, 贾孟熹, 黄茜琳. 硬质合金废料电解回收钨及W(Ⅵ)在熔盐中的电化学行为[J]. 材料导报, 2022, 36(Z1): 22010043-6.
[3] 刘小伟, 孙宁, 刘湘林, 金芳军. 基于LnBaCo2O5+δ双钙钛矿结构SOFC阴极材料的研究进展[J]. 材料导报, 2022, 36(8): 20080292-6.
[4] 鲁猷栾, 穆新伟, 黄乐舒, 石震, 郑寅. 生物质炭材料:构建电化学传感器的理想修饰材料[J]. 材料导报, 2022, 36(6): 20070278-8.
[5] 张路, 牛荻涛, 文波, 张永利, 陈昊. 改性珊瑚骨料混凝土中钢筋的腐蚀行为[J]. 材料导报, 2022, 36(6): 20110005-7.
[6] 王付胜, 王汉森, 何鹏, 胡隆伟, 陈亚军. 磁控溅射和电镀方法制备纯银镀层耐蚀性能分析[J]. 材料导报, 2022, 36(6): 20120254-6.
[7] 余剑峰, 罗凌虹, 程亮, 徐序, 王乐莹, 余永志, 夏昌奎. 钙钛矿结构SOFC阴极材料的研究进展[J]. 材料导报, 2022, 36(2): 20030066-11.
[8] 谭洁慧, 邓凌峰, 张淑娴, 李金磊, 王壮, 覃榕荣. 利用微量碳纳米管与石墨烯协同包覆提高LiCoO2正极材料的性能[J]. 材料导报, 2022, 36(2): 20100058-6.
[9] 潘冶, 钟旭, 朱银安, 陆韬, 于金. 高熵合金FeCoNiCrP的制备和电催化析氧性能[J]. 材料导报, 2022, 36(14): 22020109-5.
[10] 牛晓勤, 康小雅, 马应霞, 王嘉伟, 陈新权, 田虎, 陈玉红, 冉奋. 新型球状Ni/Co-MOFs电极材料的构筑及电化学性能研究[J]. 材料导报, 2022, 36(14): 21050021-7.
[11] 徐秀清, 王玮, 陈之腾, 李云, 胡海军. 加氢换热器用321不锈钢、镍基合金825氢脆敏感性研究[J]. 材料导报, 2022, 36(14): 21030183-6.
[12] 梁旭, 韩露, 雷雅京, 黎雯, 黄瑞滨, 陈荣生, 倪红卫, 詹玮婷. 基于氧化石墨烯/ZnO纳米阵列的无酶葡萄糖传感器[J]. 材料导报, 2022, 36(13): 21010061-6.
[13] 李东, 吴发超, 李瑞, 高彩云. 表面活性剂模板法构筑有序介孔三氧化钨及其光电化学水氧化性能[J]. 材料导报, 2022, 36(13): 21040241-6.
[14] 毛江鸿, 薛倩倩, 张军, 罗林, 马佳星. 电化学修复后钢筋低周疲劳性能退化的时间效应及其影响[J]. 材料导报, 2022, 36(12): 21050263-7.
[15] 张帆, 纪志永, 汪婧, 郭志远, 方嘉炜, 郭小甫, 赵颖颖, 刘杰, 袁俊生. GO/LiMn2O4膜电极构建及其提锂性能研究[J]. 材料导报, 2022, 36(11): 21040052-7.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed