Please wait a minute...
材料导报  2022, Vol. 36 Issue (14): 20090129-6    https://doi.org/10.11896/cldb.20090129
  金属与金属基复合材料 |
CrCoNi中熵合金变形中位错与孪晶协调变形机制
陈今良1,2, 冯中学1, 易健宏1
1 昆明理工大学材料科学与工程学院,昆明 650093
2 攀枝花学院钒钛学院,四川 攀枝花 617000
Coordination Deformation Mechanism Between Dislocation and Twin in CrCoNi Medium Entropy Alloy
CHEN Jinliang1,2, FENG Zhongxue1, YI Jianhong1
1 School of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
2 Institute of Vanadium and Titanium of Panzhihua University, Panzhihua 617000, Sichuan, China
下载:  全 文 ( PDF ) ( 4505KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 如何在提升材料强度的同时提升塑韧性一直是材料科学领域研究的热点之一,而这也是材料领域的重大科学难题和制约材料发展的重要瓶颈。CrCoNi中熵合金在室温与低温下都具有优异的强度和塑性,尤其在液氮温度下仍然具备高的塑性,因此备受研究者的关注。
传统金属在变形初期以位错滑移为主,随变形程度增加,从而诱发孪晶,以实现孪晶与位错协调变形。与传统金属不同,CrCoNi中熵合金由于具有极低的层错能,容易在变形过程中形成大量的层错、位错和孪晶。在变形中引入纳米孪晶细化晶粒,通过细晶强化实现强度和韧性的协调提升,且孪晶可以形成立体网络提升中熵合金的协调变形能力。此外,CrCoNi合金在变形过程中,位错与孪晶存在相互作用,位错塞积后引发孪晶,孪晶进而阻碍位错运动并同时增大位错密度,调整位错滑移通道,以促使位错交滑移。如此往复,CrCoNi合金的塑性变形更加均匀,从而使强度和韧性这一矛盾得以协调。
为阐述CrCoNi中熵合金在变形中呈现的优异力学性能与纳米微观结构的关系,本文从CrCoNi中熵合金的变形机理出发,综述了CrCoNi合金变形过程中位错与孪晶的存在形态、运动方式、协调机制等,分析了CrCoNi合金在不同变形条件下位错与孪晶的相互作用及二者对变形的影响,论述了位错-孪晶协同强韧化主导机制,最后对未来中熵合金的研究进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈今良
冯中学
易健宏
关键词:  中熵合金  位错  孪晶  协调变形  强韧性  机制    
Abstract: How to improve plasticity and toughness of materials while improving strength has always been one of the hotspots in the field of material scie-nce, which is also a major scientific problem in the field of materials and an important bottleneck restricting the development of materials. The CrCoNi medium entropy alloy has excellent strength and plasticity at room temperature and low temperature, especially at liquid nitrogen temperature, which attracts the attention of researchers.
In the early stage of deformation, the traditional metal is mainly dislocation slip. With the increase of strain, twins are induced, and the coordinated deformation of twins and dislocations is realized.Unlike conventional metals, the CrCoNi medium entropy alloy has very low stacking fault energy, it is easy to form a large number of stacking faults, dislocations and twins in the deformation process. Nano-twins are introduced to refine grains in the deformation, and the coordinated improvement of strength and toughness is realized through fine grain strengthening. Moreover,twins can form three-dimensional network and improve the ability of coordinated deformation.In addition,during the deformation process of CrCoNi alloy, there is an interaction between dislocations and twins. After dislocation packing, twins are triggered, which hinders the movement of dislocations and improves the dislocation density. The dislocation slip channel is adjusted to promote dislocation cross slip. Thus, the plastic deformation of CrCoNi alloy is more uniform and the contradiction between strength and toughness is coordinated.
In order to explain the relationship between excellent mechanical properties and nano-structure of CrCoNi medium entropy alloy during deformation, this paper starts from the deformation mechanism of CrCoNi medium entropy alloy, summarizes the existing morphology, motion mode and coordination mechanism of dislocation and twin in the deformation process of CrCoNi alloy, analyzes the interaction between dislocation and twin in CrCoNi alloy under different deformation conditions and their influence on deformation, and discusses the dominant mechanism of dislocation-twin synergistic strengthening and toughening. Finally, future research of medium entropy alloy is prospected.
Key words:  medium entropy alloy    dislocation    twin    coordination deformation    strengthening and toughening    mechanism
发布日期:  2022-07-26
ZTFLH:  TG139  
基金资助: 云南省科技厅面上基金(908075156031);钒钛资源综合利用四川省重点实验室项目(2018FTSZ41);攀枝花市科技指导计划项目(2020ZD-G-10)
通讯作者:  yijianhong@kmust.edu.cn   
作者简介:  陈今良,2013年6月毕业于太原科技大学,获得工学硕士学位,现为昆明理工大学材料科学与工程学院博士研究生,在易健宏教授的指导下进行研究。目前主要研究领域为中熵合金变形机理。
易健宏,昆明理工大学副校长、二级教授、博士研究生导师,1986—1996年,分别于中南矿冶学院、中南工业大学获得学士、硕士和博士学位。2004年获得中组部、中宣部和中国科协联合授予“中国青年科技奖”,2006年获得宝钢“全国优秀教师奖”,教育部新世纪优秀人才计划和中青年骨干教师培养计划人选者。中国材料研究学会常务理事,中国材料研究学会粉末冶金分会和中国钢协粉末冶金分会副理事长,中国有色金属学会粉末冶金及金属陶瓷学术委员会和中国机械工程学粉末冶金分会副主任委员,中国有色金属工业协会专家委员会和中国机协粉末冶金专家委员会委员,中国有色金属学会材料和贵金属学术委员会委员,中国钨业工业协会理事;《粉末冶金技术》与《粉末冶金工业》杂志副主编,《中国有色金属学报》(中英文版)《中国材料进展》《中国钨业》《稀有金属材料科学与工程》《功能材料》《贵金属》杂志编委和多个国际刊物审稿人。主要从事粉末冶金、稀贵金属材料和纳米材料等方面的科学研究与教学工作。承担国家自然科学基金、国家“863”计划、国家军工项目等科研项目30余项,多项获省部级科技进步奖。发表学术论文200余篇,100余篇次被EI、SCI、ISTP等摘录。累积申请专利50余项,授权专利30项,获得省部级奖励10余项。
引用本文:    
陈今良, 冯中学, 易健宏. CrCoNi中熵合金变形中位错与孪晶协调变形机制[J]. 材料导报, 2022, 36(14): 20090129-6.
CHEN Jinliang, FENG Zhongxue, YI Jianhong. Coordination Deformation Mechanism Between Dislocation and Twin in CrCoNi Medium Entropy Alloy. Materials Reports, 2022, 36(14): 20090129-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20090129  或          http://www.mater-rep.com/CN/Y2022/V36/I14/20090129
1 Rao J C,Diao H Y,Ocelík V,et al. Acta Materialia, 2017,131,206.
2 Dennis E J,Nokeun P. Materials Letters, 2019,255,126528.
3 Schneider M, George E P, Manescau T J,et al. Data in Brief, 2019,27,104592.
4 Laplanche G, Kostka A, Reinhart C,et al. Acta Materialia,2017,128,292.
5 Bernd G, Anton H, Keli V T, et al. Nature Communications,2016,7,10602.
6 Zhang Z J, Sheng H W, Wang Z J, et al. Nature Communications, 2017, 8,14390.
7 Chen C X.Deformation mechanism of high entropy alloy. Ph.D. Thesis, Zhejiang University, China, 2018(in Chinese).
陈陈旭.高熵合金微观变形机理.博士学位论文,浙江大学,2018
8 Laplanche G, Schneider M, Scholz F,et al. Scripta Materialia, 2020,177,44.
9 Liang Y X,Yang X F,Ming K S,et al. Science China Technological Sciences, 2021,64(2),407.
10 Slone C E, Chakraborty S, Miao J,et al. Acta Materialia, 2018,158,38.
11 Slone C E, Miao J, George E P,et al. Acta Materialia, 2019,165,496.
12 Wen R, You C P, Zeng L F,et al. Journal of Materials Science, 2020,55(26),12544.
13 Wu X L, Yang M X, Jiang P,et al. Scripta Materialia, 2020,178,452.
14 Yang M X, Zhou L L, Wang C,et al. Scripta Materialia, 2019,172,66.
15 Dan S G,Werner S, Jose R I,et al. Materials Science Forum, 2018,941,833.
16 Dan S G,Werner S,Aurimas P,et al. Intermetallics, 2018,101,87.
17 Sathiaraj G D,Kalsar R,Kumar S S,et al. Materials Today: Proceedings, 2020,27,2147.
18 He G A, Zhao Y F,Gan B,et al. Journal of Alloys and Compounds, 2020,815,152382.
19 Slone C E, LaRosa C R, Zenk C H,et al. Scripta Materialia, 2020,178,295.
20 Huang H, Li X Q, Dong Z H,et al. Acta Materialia, 2018,149,388.
21 Praveen S,Peyman A R,JeongM P,et al. Materials Science & Enginee-ring A, 2019,766,138372.
22 Lu W J,Luo X,Yang Y Q,et al. Materials Chemistry and Physics, 2019,238,121841.
23 Sadeghilaridjani M,Mukherjee S. JOM, 2019,71,3466.
24 Praveen S,Peyman A R,Jae W B,et al. Intermetallics, 2019,113,106578.
25 Bin G,Jeffrey M W, Zhongnan B,et al. Journal of Materials Science & Technology, 2019,35,957.
26 Dennis E J,Yongsu L,Myeong H J,et al. Materials Letters,2019,253,327.
27 Lu L,Chen X, Lu K,et al. Science, 2009,323,607.
28 Slone C E, George E P, Mills M J. Journal of Alloys and Compounds, 2020,817,152777.
29 Zhang R P, Zhao S T, Ding J, et al. Nature, 2020,581,283.
30 Binglun Y, Shuhei Y, Nobuhiro T, et al. Nature Communications, 2020,11,2507.
31 Zhang F X, Zhao S J, Jin K,et al. Physical Review Letters, 2017,118,205501.
32 He G A,Zhao Y F,Gan B,et al. Journal of Alloys and Compounds, 2020,815,152382.
33 Ma Y,Yuan F P,Yang M X,et al. Acta Materialia, 2018,148,407.
34 Yuan F P, Cheng W Q, Zhang S D,et al. Materialia, 2020,9,100565.
35 Feng K, Zhang Y, Li Z G,et al. Surface & Coatings Technology, 2020,397,126004.
36 Tsianikas S J, Chen Y, Xie Z. Materials Science & Technology, 2020,39,183.
[1] 张曦挚, 崔红, 胡杨, 邓红兵, 王昊. SiC-ZrC陶瓷含量对C/C-SiC-ZrC复合材料性能的影响[J]. 材料导报, 2022, 36(Z1): 21120073-5.
[2] 陈东方, 武海鹏, 梁钒, 周骐, 宋显刚, 田爱琴. 六边形Al-复合材料薄壁混杂管准静态压缩实验和吸能机理分析[J]. 材料导报, 2022, 36(Z1): 22020120-6.
[3] 胡时, 蔡海兵, 马祖桥, 袁助, 丁祖德. 不同加载速率下饱水高延性喷射混凝土的单轴压缩试验[J]. 材料导报, 2022, 36(8): 21090227-10.
[4] 张文博, 石建丽, 马建中, 卫林峰, 范倩倩. 荧光碳量子点及其在防伪中的应用[J]. 材料导报, 2022, 36(7): 20110186-11.
[5] 李玉妍, 杨忠鑫, 陈南春, 莫胜鹏, 王秀丽, 解庆林. Zn2+交联海藻酸钠抑菌缓释微球制备及其抑菌效应[J]. 材料导报, 2022, 36(7): 21020040-7.
[6] 李天天, 李宝让, 刘文洁, 赵鹏翔, 杜小泽. 固-固相变储热及其材料制备和性能优化技术(Ⅰ)[J]. 材料导报, 2022, 36(5): 20080203-15.
[7] 孙文, 闫秋艳, 苏超, 栾世方, 殷敬华. 高分子医用组织胶粘剂的应用与研究进展[J]. 材料导报, 2022, 36(3): 21090149-17.
[8] 姚峄林, 张锦秋, 杨培霞, 安茂忠. 激光辅助电沉积技术及其在制备功能材料方面的应用[J]. 材料导报, 2022, 36(3): 20080209-9.
[9] 张平, 蒋丽, 杨金学, 苏钲雄, 王建强, 施坦, 卢晨阳. 核用难熔高熵合金的研究进展[J]. 材料导报, 2022, 36(14): 22060260-22.
[10] 殷会芳, 赵吉庆, 杨钢. 淬火温度对超超临界火电站用COST-FB2钢显微组织和室温强度的影响[J]. 材料导报, 2022, 36(14): 21030261-6.
[11] 王晓晶, 涂龙, 罗晓亮, 王浩旭, 胡振峰, 梁秀兵. 聚合物基材料4D打印研究进展[J]. 材料导报, 2022, 36(14): 20100265-15.
[12] 杨文涛, 何鹏飞, 刘明, 周永欣, 王海斗, 白宇, 李青. 热处理工艺对铝硅合金显微组织和性能影响的研究现状[J]. 材料导报, 2022, 36(11): 20080038-9.
[13] 陈晓平, 楼玉民, 赵宁宁, 黄一君, 胡海龙, 岳建岭. 基于异质结构忆阻器的研究进展[J]. 材料导报, 2022, 36(10): 20070058-10.
[14] 赵燕春, 李暑, 李春玲, 赵鹏彪, 李文生, 寇生中, 阎峰云. 热处理对铁基中熵合金微观结构及力学性能的影响[J]. 材料导报, 2022, 36(1): 20090161-5.
[15] 陈昌隆, 赵宜妮, 李玉阁. 液体高速冲蚀与防护涂层研究现状[J]. 材料导报, 2021, 35(z2): 361-366.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed