Please wait a minute...
材料导报  2022, Vol. 36 Issue (14): 21030261-6    https://doi.org/10.11896/cldb.21030261
  金属与金属基复合材料 |
淬火温度对超超临界火电站用COST-FB2钢显微组织和室温强度的影响
殷会芳, 赵吉庆, 杨钢
钢铁研究总院,特殊钢研究院,北京 100081
Effect of Quenching Temperature on Microstructures and Room Temperature Strength of COST-FB2 Steel Used in Ultra-supercritical Coal-fired Power Plants
YIN Huifang, ZHAO Jiqing, YANG Gang
Research Institute for Special Steel, Central Iron and Steel Research Institute, Beijing 100081, China
下载:  全 文 ( PDF ) ( 8625KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 COST-FB2钢因具有优越的高温持久性能而被广泛应用在620 ℃超超临界火电站机汽轮机转子上。本工作对取自国内首支自主研发制备的20 t级COST-FB2钢转子大锻件本体的试样进行了不同温度淬火和两次回火的热处理,并测试了其力学性能,研究了淬火温度对COST-FB2钢微观组织的影响。结果表明:在1 000~1 150 ℃内,随着淬火温度升高,COST-FB2钢的强度和硬度不断增加,塑性整体变化不大,冲击功由10 J增大至23.5 J 后又开始减小;COST-FB2钢的平均晶粒尺寸由65.5 μm 增加到212.1 μm,马氏体板条块宽度由4.75 μm 增加至6.06 μm,位错密度由4.8×109 cm-2增加至11.8×109 cm-2。通过强化增量计算推断析出强化和位错强化的增量是COST-FB2钢回火后室温屈服强度增加的主要原因; 将晶界强化和马氏体板条块界强化分别与基体强度、析出强化和位错强化增量之和叠加,得出马氏体板条块界强化增量叠加值更接近试验屈服强度值。该研究结果能够为COST-FB2钢大锻件整体热处理提供参考,助力大锻件的国产化。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
殷会芳
赵吉庆
杨钢
关键词:  COST-FB2钢  淬火温度  组织和力学性能  强化机制    
Abstract: COST-FB2 steel is commonly used in the turbine rotors of ultra-supercritical power plants owing to its excellent high temperature creep strength. The samples used in this work were cut from the body area of a 20-ton of COST-FB2 steel forging rotor that China independently developed. Quenching at different temperatures and two-step tempering were realized for the heat treatment of COST-FB2 steel. Then, the mechanical properties of the steel were tested, and the effect of quenching temperature on the microstructure of COST-FB2 steel was characterized. The results demonstrate that when the quenching temperature increased from 1 000 ℃ to 1 150 ℃, the hardness and the strength of COST-FB2 steel increased continuously while the plasticity varied slightly and the impact energy first increased from 10 J to 23.5 J but then decreased. When the quenching temperature increased from 1 000 ℃ to 1 150 ℃, the prior austenite grain (PAG) size of COST-FB2 steel increased from 65.5 μm to 212.1 μm, the block width increased from 4.75 μm to 6.04 μm, and the dislocation density increased from 4.8×109 cm-2 to 11.8×109 cm-2. Strengthening calculations helped determine that strengthening dispersion and dislocation are the primarily contributors for improving the yield strength of tempered COST-FB2 steel. Grain boundary and block boundary strengthening are superimposed with the sum of matrix strengthening, dispersion strengthening and dislocation strengthening increments. In summary, the superimposed block boundary strengthening increment corresponded to the experimentally obtained yield strength. This study can help improve the overall heat treatment of large forging rotors and domesticate them.
Key words:  COST-FB2 steel    quenching temperature    microstructure and mechanical properties    strengthen mechanism
发布日期:  2022-07-26
ZTFLH:  TG156  
基金资助: 国家自然科学基金(51971226)
通讯作者:  yanggang@nercast.com   
作者简介:  殷会芳,钢铁研究总院博士研究生,主要从事耐热钢组织与性能的研究,并发表学术论文10余篇。
杨钢,钢铁研究总院教授,首席专家,博士研究生导师,享受国务院政府特殊津贴。1984年于浙江大学获学士学位,分别在1987年和1990年于钢铁研究总院获得工学硕士学位和工学博士学位,留院工作至今。主要从事不锈耐热钢的研发和应用工作。发表论文180余篇,获授权专利35项,著作1本,获国家科技进步一等奖1项。
引用本文:    
殷会芳, 赵吉庆, 杨钢. 淬火温度对超超临界火电站用COST-FB2钢显微组织和室温强度的影响[J]. 材料导报, 2022, 36(14): 21030261-6.
YIN Huifang, ZHAO Jiqing, YANG Gang. Effect of Quenching Temperature on Microstructures and Room Temperature Strength of COST-FB2 Steel Used in Ultra-supercritical Coal-fired Power Plants. Materials Reports, 2022, 36(14): 21030261-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21030261  或          http://www.mater-rep.com/CN/Y2022/V36/I14/21030261
1 Zeiler G. Materials for ultra-supercritical and advanced ultra-supercritical power plants, Di Gianfrancesco A, ed, Elsevier, Netherlands, 2017, pp.162.
2 Rod Vanstone Ian Chilton,Pawel Jaworski. Journal of Engineering for Gas Turbines and Power, 2013, 135,1.
3 Taylor M,Thomton D V. IMechE Conference Transactions,1997, 2,125.
4 Zia-ebrahimi F, Krauss G. Acta Metallurgica,1984, 32(10), 1767.
5 Dudova N, Mishnev R, Kaibyshev R. Iron and Steel Institute of Japan, International, 2011, 51(11),1912.
6 Wang P, Kang M K.Transactions of Materials and Heat Treatment, 1983, 4(2),19(in Chinese).
王平, 康沫狂.金属热处理学报, 1983, 4(2), 19.
7 Morito Shigekazu, Igarashi Ryota, Kamiya Keiichiro, et al. Materials Science Forum, 2010, 638-642, 1459.
8 Zhang Y Q,Gu J F, Han L Z, et al. Journal of Materials Research and Technology,2021, 12, 2462.
9 Yin H F,Yang G,Zhao J Q.Iron and Steel,2021,56(5),91(in Chinese).
殷会芳, 杨钢, 赵吉庆.钢铁, 2021, 56(5), 91.
10 Peng L Z. Development of electroslag remelting slag for COST-FB2 steel. Master's Thesis, Northeastern University, China, 2016(in Chinese).
彭雷朕. 电渣重熔COST-FB2钢用渣系开发. 硕士学位论文,东北大学, 2016.
11 Zeng X. Effect of heat treatment on the microstructure and properties of COST-FB2 steel. Master's Thesis, Kunming University of Science and Technology, China, 2017(in Chinese).
曾骁. 热处理工艺对COST-FB2钢组织和力学性能的影响. 硕士学位论文, 昆明理工大学, 2017.
12 Zhang Y. Effect of solid solution treatment on the microstructure and properties of COST-FB2 steel.Master's Thesis, Kunming University of Science and Technology, China, 2018(in Chinese).
张煜. 固溶工艺对FB2转子钢组织与性能的影响. 硕士学位论文, 昆明理工大学, 2018.
13 Zhang Y Q, Li C W,Shen G, et al. Steel Research International, 2021,92(4), 1.
14 Li K J,Cai Z P, Wu Y, et al. Acta Metallurgica Sinica, 2017, 53(7),778(in Chinese).
李克俭,蔡志鹏,吴瑶,等.金属学报, 2017, 53(7), 778.
15 Zhang Y, Zhao J Q, Li L, et al.Heat Treatment of Metals, 2019, 44(1),142.(in Chinese).
张煜, 赵吉庆, 李莉,等. 金属热处理, 2019, 44(1),142.
16 Wang X, Zhang X Y,Ouyang J G, et al. CFHI Technology, 2016, 169(1),68(in Chinese).
王欣, 张喜英, 欧阳建国,等. 一重技术, 2016, 169(1),68.
17 Abe F.Science and Technology of Advanced Materials, 2008, 9 (1),1.
18 Galindo-Nava E I, Rivera-Díaz-Del-Castillo P E J. Acta Materialia,2015, 98,81.
19 Yan P, Liu Z D,Bao H S, et al. Materials Science and Engineering A, 2014, 597,148.
20 Moon J, Lee T H, Kim S D, et al.Materials Characterization, 2020,170,2.
21 Morito S, Yoshida H, Maki T, et al. Materials Science and Engineering A,2006, 438-440, 237.
22 Maruyama K, Sawada K, Koike J.Journal of the Iron and Steel Institute of Japan International, 2001, 41(6), 641.
23 Fedorova I, Kostka A, Tkachev E, et al. Materials Science and Enginee-ring A, 2016, 662, 443.
24 Grybnas A, Makareviius V, Baltunikas A, et al. Materials Science and Engineering A, 2017, 696,453.
25 Hu Z F.Application research and evaluation of martensitic heat resistant steel, Science Press, China, 2018, pp. 25(in Chinese).
胡正飞.马氏体耐热钢的应用研究与评价,科学出版社,2018,pp.25.
26 Hättestrand M, Andrén H O. Mircron, 2001, 32(8), 789.
27 Wang C F, Wang M Q, Shi J, et al. In: Conference Record of the 2th Electron Backscatter Diffraction Technique and its Applications. Inner Mongolia, 2007(in Chinese).
王春芳, 王毛球, 时捷, 等. 第二届电子背散射衍射技术及其应用会议.内蒙古,2007.
28 Wang C F, Wang M Q, Shi J, et al. Scripta Materialia,2008,58(6),492.
[1] 马力, 赵赫, 昝宇宁, 肖伯律, 王东, 王全兆, 王文广. 耐热铝合金及其复合材料的制备、应用和强化机制[J]. 材料导报, 2021, 35(Z1): 414-420.
[2] 马涛, 李慧蓉, 高建新, 王旭峰, 宋宏伟, 李运刚. Fe-Mn-Al-C低密度钢强化机制与拉伸性能研究进展及Nb微合金化展望[J]. 材料导报, 2020, 34(23): 23154-23164.
[3] 黄章, 杜传治, 方金林, 于浩, 黎淑英, 宋成浩, 段晓妮. Nb微合金化对Q500MPa级热轧H型钢组织和性能的影响[J]. 材料导报, 2020, 34(14): 14175-14180.
[4] 蔡祥, 乔岩欣, 许道奎, 李传强, 杨兰兰, 周慧玲. 镁锂合金强化行为研究进展[J]. 材料导报, 2019, 33(Z2): 374-379.
[5] 张娜,程仁菊,董含武,刘文君,詹俊,蒋斌,潘复生. Sr在耐热镁合金中的应用及研究进展[J]. 材料导报, 2019, 33(15): 2565-2571.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed