Please wait a minute...
材料导报  2021, Vol. 35 Issue (21): 21169-21177    https://doi.org/10.11896/cldb.20060246
  无机非金属及其复合材料 |
基于X-ray CT技术研究混凝土内部损伤的研究进展
李娜1,2, 赵燕茹3
1 内蒙古工业大学理学院,呼和浩特 010051
2 内蒙古建筑职业技术学院艺术设计学院,呼和浩特 010070
3 内蒙古工业大学土木工程学院,呼和浩特 010051
Research Progress of Concrete Internal Damage Based on X-ray CT Technology
LI Na1,2, ZHAO Yanru3
1 College of Science, Inner Mongolia University of Technology, Hohhot 010051, China
2 College of Art and Design, Inner Mongolia Technical College of Construction, Hohhot 010070, China
3 School of Civil Engineering, Inner Mongolia University of Technology, Hohhot 010051, China
下载:  全 文 ( PDF ) ( 12404KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 使用X射线断层扫描(X-ray CT)方法可以观测混凝土的内部微观结构并据此分析混凝土的内部损伤,这对研究混凝土材料的性能具有重要意义。CT分辨率高低和试件尺寸大小之间的矛盾以及加载设备的局限阻碍了其在混凝土材料研究中的推广应用。随着CT设备的不断优化,CT用于混凝土的研究逐渐由定性分析发展为定量分析,为进一步研究混凝土材料的性能提供了可靠方法。
近五年来,CT用于混凝土的研究由孔的分布、裂缝扩展形态及位置、纤维分布、纤维腐蚀状态等定性分析发展为定量分析。使用CT数据进行定量分析主要有五个方面,一是计算各相在不同条件下的体积,以此分析混凝土损伤变化规律;二是分析孔隙参数,如孔的尺寸、孔径分布、不同孔体积占比等,以此研究孔隙与混凝土损伤之间的关系;三是分析裂缝宽度、体积变化,以此分析混凝土断裂变化规律;四是定量评估纤维在混凝土内部的分散状态及方向,以此研究纤维对混凝土性能的影响;五是基于CT图像构建三维模型进行模拟,获得弹性模量及应力应变分布并与试验结果作对比分析。
本文基于孔结构和裂缝变化规律对X-ray CT应用于混凝土材料内部损伤的研究进行综述,对近些年来,特别是近五年的研究现状进行总结,分析X-ray CT用于混凝土研究的优劣势,为混凝土的研究者提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李娜
赵燕茹
关键词:  X-ray CT  混凝土  CT设备  定量分析  内部损伤    
Abstract: The internal microstructure and damage of concrete can be observed and analyzed by X-ray CT scanning, which is of great significance for studying the performance of concrete materials. The contradiction between the resolution of CT and the size of the specimen and the limitation of loading equipment hinder the popularization and application of CT in the research of concrete materials. With the optimization of CT equipment, the research of concrete has gradually developed from qualitative to quantitative analysis using CT, which providing a reliable method for research on the performance of concrete materials in the further.
In the past five years, the research on concrete through CT has developed from pore distribution, crack propagation shape and location, fiber distribution and fiber corrosion to quantitative analysis. Five quantitative analysis of concrete by CT as follows: firstly, analyze the concrete da-mage rules by calculating the volume of each phase under different conditions. Secondly, study the relationship between pore and concrete da-mage by analyzing pore parameters, such as pore size, pore size distribution and different pore volume ratio, etc. Thirdly, study the variation rule of concrete fracture by analyzing the variation of crack width and volume. Fourthly, study the influence of fiber on the concrete properties by quantitatively evaluating the dispersion state and direction of the fibers in the concrete. Finally, build three-dimensional model based on CT images, obtain the elastic modulus and stress-strain distribution and compare with the test results.
This paper is reviewed the variation rules of pore structure and cracks about concrete by X-ray CT in recent years, especially in the past five years. The advantages and disadvantages of the application of X-ray CT for studying concrete are analyzed, which can provide references for concrete researchers.
Key words:  X-ray CT    concrete    CT equipment    quantitative analysis    internal damage
               出版日期:  2021-11-10      发布日期:  2021-11-30
ZTFLH:  TU528  
基金资助: 国家自然科学基金项目(11762015;11362013)
通讯作者:  zhaoyanru710523@126.com   
作者简介:  李娜,2012年7月毕业于内蒙古工业大学,获得工学硕士学位。现为内蒙古工业大学理学院博士研究生、内蒙古建筑职业技术学院教师,在赵燕茹教授的指导下进行研究。目前主要研究领域为混凝土的耐久性。
赵燕茹,博士,教授,力学博士研究生导师、土木工程硕士生导师,现就职于内蒙古工业大学土木工程学院建筑工程系。主要研究混凝土力学性能及耐久性能、电子束云纹技术及其应用、纤维增强复合材料界面力学性能。
引用本文:    
李娜, 赵燕茹. 基于X-ray CT技术研究混凝土内部损伤的研究进展[J]. 材料导报, 2021, 35(21): 21169-21177.
LI Na, ZHAO Yanru. Research Progress of Concrete Internal Damage Based on X-ray CT Technology. Materials Reports, 2021, 35(21): 21169-21177.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20060246  或          http://www.mater-rep.com/CN/Y2021/V35/I21/21169
1 Hounsfield G N. The British Journal of Radiology, 1973, 46, 1016.
2 Plessis A D, Boshoff W P.Construction and Building Materials, 2019, 199, 637.
3 Morgan I L, Ellinger H, Klinksiek R, et al. Journal of the American Concrete Institute, 1980, 77(1), 23.
4 Tian W, Han N. Advances in Materials Science and Engineering, 2017(3),13.
5 Hou T C, Nguyen V K, Su Y M, et al. Construction and Building Materials, 2017, 133, 397.
6 Lei G Y, Han J C, Dang F N. Advances in Materials Science and Engineering, 2018, 2018,9.
7 Chen J X, Deng X H, Luo Y B, et al. Construction and Building Mate-rials, 2015, 83, 275.
8 Lukovic M, Ye G . Materials, 2016, 9, 2.
9 Yasmina Shields, Edward Garboczi, Jason Weiss, et al. Cement and Concrete Composites, 2018, 89, 120.
10 Wan K S, Xue X B. Materials Characterization, 2013, 82, 32.
11 Hong S X, Liu P, Zhang J C, et al. Cement and Concrete Composites, 2019, 100, 15.
12 Skarżyński Ł, Tejchman J. Strain, 2016, 52, 26.
13 Tyler Oesch, Eric Landis, Daniel Kuchma. Materials and Structures, 2018, 51, 73.
14 Yan X H, Wang Z Q, Rao M J, et al. Advances in Materials Science and Engineering, 2018, 2018, 13.
15 Skarżyński Ł, Marzec I, Tejchman J. International Journal of Fatigue, 2019, 122, 256.
16 Łukasz Skarżyński, Jan Suchorzewski. Construction and Building Mate-rials, 2018, 183, 283.
17 Kwang Yeom Kim, Tae Sup Yun, Kwang Pil Park. Cement and Concrete Research, 2013, 50, 34.
18 Yu Z W, Tan S, Shan Z, et al. Fatigue & Fracture of Engineering Mate-rials & Structures, 2017, 40, 1960.
19 Gao J, Sha A M, Wang Z J, et al. Construction and Building Materials, 2018, 177, 134.
20 Liu J Z, Ba M F, Du Y G, et al.Construction and Building Materials, 2016, 122, 619.
21 Yao W, Liu H W, Xu Y, et al. Construction and Building Materials, 2017, 136, 139.
22 Shi J J, Ming J, Sun W.American Society of Civil Engineers, 2018, 30(7), 04018131.
23 Carrara P, Kruse R, Bentz D P, et al.Cement and Concrete Composites, 2018, 93, 30.
24 Liu T J, Qin S S, Zou D J, et al. Construction and Building Materials. 2018, 192, 429.
25 Mínguez J, González D C, Vicente M A.Construction and Building Materials, 2018, 168, 906.
26 Vicente M A, Ruiz G, González D C, et al.International Journal of Fatigue, 2018, 114, 138.
27 Mínguez J, Vicente M A, González D C.Construction and Building Materials, 2019, 198, 718.
28 Sun X, Guo S C, Dai Q L, et al.Materials Characterization, 2017, 131, 98.
29 Li Z, Liu L L, Yan S H, et al. Construction and Building Materials, 2019, 207, 190.
30 Bartosz Powierza, Ludwig Stelzner, Tyler Oesch, et al. Journal of Nondestructive Evaluation, 2019, 38, 15.
31 Bernardes E E, Carrasco E V M, Vasconcelos W L, et al. Construction and Building Materials, 2015, 95, 703.
32 Wang Y S, Dai J G.NDT & E International, 2017, 86, 28.
33 Zhu X H, Zhang Z L, Yang K, et al. Cement and Concrete Composites, 2018, 89, 139.
34 Zhou H N, Li H, Abdelhady A, et al. Construction and Building Mate-rials, 2019,212, 130.
35 Zhao Y J, Wang X W, Jiang J W, et al. Construction and Building Materials, 2019, 213,182.
36 Kwang Yeom Kim, Tae Sup Yun, Jinhyun Choo, et al. Construction and Building Materials, 2012, 37, 93.
37 Schock J, Liebl S, Achterhold K, et al. Cement and Concrete Research, 2016, 89, 200.
38 Dong H, Gao P, Ye G. Materials and Structures, 2017, 50, 154.
39 Sang-Yeop Chung, Tong-Seok Han, Se-Yun Kim, et al. Cement and Concrete Composites, 2016, 65, 150.
40 Michael P, Shermaine C, Regina P, et al. Materials, 2016, 9, 388.
41 Sang-Yeop Chung, Mohamed Abd Elrahman, Dietmar Stephan.Energy and Buildings, 2016, 125, 122.
42 Eyad Masad, Aslam Al Omari, Hamn-Ching Chen. Computational Mate-rials Science, 2007, 40, 449.
43 Yu F, Sun D Q, Hu M J, et al. Construction and Building Materials, 2019, 200, 687.
44 Zhang J, Ma G D, Ming R P, et al. Construction and Building Materials, 2018, 161, 468.
45 She W, Du Y, Zhao G T, et al. Construction and Building Materials, 2018, 170, 153.
46 Zeng Q, Lin Z, Zhou C S, et al. Chemical Physics Letters, 2019, 726, 117.
47 Yang L, Gao D Y, Zhang Y S, et al. Royal Society Open Science, 2019, 6, 190112.
48 Zuo Y, Qi B, Gao J M, et al. Advances in Materials Science and Engineering, 2018, 2018, 5.
49 Yuan J, Liu Y, Li H X, et al. Advances in Materials Science and Engineering, 2014, 2014, 11.
50 Chen J X, Zhao P Y, Luo Y B, et al. Journal of Civil Engineering and Management, 2017, 23(5), 583.
51 Cui D, Sun W, Wan K, et al. Journal of Testing and Evaluation, 2017,45,2.
52 Łukasz Sadowski, Damian Stefaniuk. Applied Sciences, 2017, 7, 123.
53 Olawuyi B J, Boshoff W P. Construction and Building Materials, 2017, 135, 580.
54 Sang-Yeop Chung, Mohamed Abd Elrahman, Pawel Sikora, et al. Mate-rials, 2017, 10, 1354.
55 Alireza Kashani, Tuan Duc Ngo, Priyan Mendis, et al. Journal of Cleaner Production, 2017, 149, 925.
56 Fares Bennai, Chady El Hachem, Kamilia Abahri, et al. Construction and Building Materials, 2018, 188, 983.
57 Sun C, Zhu Y, Guo J, et al. Construction and Building Materials, 2018, 186, 833.
58 Pang Xueyu, John Singh, Walmy Cuello Jimenez. Construction and Building Materials, 2018, 167, 243.
59 Li Z J, Wang L, Ma G W. International Journal of Concrete Structures and Materials, 2018, DOI: 10.1186/s40069-018-0269-0.
60 Nathan Bossa, Perrine Chaurand, Jérôme Vicente, et al. Cement and Concrete Research, 2015, 67, 138.
61 Cui D, Nemkumar B,Wang Q N, et al. Construction and Building Mate-rials, 2019, 196, 692.
62 Qian R S, Zhang Y S, Liu C, et al. Materials Characterization, 2018, 145, 277.
63 Rifai H, Staude A, Meinel D, et al. Cement and Concrete Research, 2018, 111, 72.
64 Wei Y, Wu Z H, Yao X F, et al. American Society of Civil Engineers, 2019, 31(8), 04019153.
65 Ilker Tekin, Recep Birgul, Huseyin Yilmaz Aruntas. Construction and Building Materials, 2012, 35, 15.
66 Wang Y S, Dai J G. Construction and Building Materials, 2017, 153, 385.
67 Tian W, Han N. Measurement, 2019, 140, 382.
68 Yuzo Obara, Izumi Tanikura, Jahe Jung, et al. Journal of Advanced Concrete Technology, 2016, 14, 433.
69 Sun W, Hou K P, Yang Z Q, et al. Construction and Building Materials, 2017, 138, 69.
70 Rafal Anay, Vafa Soltangharaei, Lateef Assi, et al. Construction and Building Materials, 2018, 164, 286.
71 Ríos J D, Cifuentes H, Leiva C. Cement and Concrete Research, 2019, 119, 77.
72 Michael Henry, Katsufumi Hashimoto, Ivan Sandi Darma, et al. Journal of Advanced Concrete Technology, 2016, 14, 134.
73 Tian W, Han N. Journal of Advanced Concrete Technology, 2016, 14, 679.
74 Li Y, Li Y Q, Guan Z Z, et al. Construction and Building Materials, 2018, 191, 1201.
75 Liu F, You Z P, Yang X, et al. Construction and Building Materials, 2018, 181, 369.
76 Yang Y G, Zhang Y S, She W, et al. Construction and Building Mate-rials, 2018, 186, 182.
77 Yuan J, Liu Y, Tan Z C, et al. Construction and Building Materials, 2016, 108, 129.
78 Chen F, Gao J M, Qi B, et al. Construction and Building Materials, 2017, 154, 849.
79 Jin Z Q, Zhao X, Zhao T J, et al. International Journal of Electrochemical Science, 2016, 11, 8779.
80 Ebell G, Burkert A, Fischer J, et al. Materials and Corrosion, 2016, 67, 583.
81 Dong B Q, Fang G H, Liu Y Q, et al. Cement and Concrete Research, 2017, 100, 311.
82 Fang G H, Ding W J, Liu Y Q, et al. Construction and Building Mate-rials, 2019, 207, 304.
83 Dong B Q, Shi G Y, Dong P, et al. Cement and Concrete Composites, 2018, 92, 102.
84 Daisuke Fukuda, Yoshitaka Nara, Yuya Kobayashi, et al. Cement and Concrete Research, 2012, 42, 1494.
85 Wang J, Dewanckele J, Cnudde V, et al. Cement & Concrete Composites, 2014, 53, 289.
86 Ruan S Q, Qiu J S, Weng Y W, et al. Cement and Concrete Research, 2019, 115, 176.
87 Lv L, Yang Z, Chen G, et al. Construction and Building Materials, 2016, 105, 487.
88 Lv L Y, Erik Schlangen, Zheng X Y, et al. Materials, 2016, 9, 1025.
89 Fang G H, Liu Y Q, Qin S F, et al. Construction and Building Mate-rials, 2018, 179, 336.
[1] 石妍, 李家正, 李杨, 韩炜. 混凝土表面热喷涂陶瓷防护涂层的可行性试验研究[J]. 材料导报, 2021, 35(Z1): 238-241.
[2] 李崇智, 王梦宇, 牛振山. 渗透结晶型表面防护剂对混凝土耐久性的影响[J]. 材料导报, 2021, 35(Z1): 247-250.
[3] 代金芯, 石宵爽, 王清远, 张红恩, 栾晨晨, 张宽裕, 杨富花. 多因素对再生复合掺料基地聚物混凝土抗压强度的影响[J]. 材料导报, 2021, 35(9): 9077-9082.
[4] 龚建清, 罗鸿魁, 张阳, 龚啸, 谢泽酃, 吴五星, 戴远帆. 减缩剂和HCSA膨胀剂对UHPC力学性能和收缩性能的影响[J]. 材料导报, 2021, 35(8): 8042-8048.
[5] 牛建刚, 许文明, 梁剑. 受压区局部约束塑钢纤维轻骨料混凝土梁的抗弯性能[J]. 材料导报, 2021, 35(8): 8056-8063.
[6] 陈宗平, 周济, 王成, 苏炜炜. 高温喷水冷却后圆钢管再生混凝土短柱轴压性能试验及剩余承载力评估[J]. 材料导报, 2021, 35(7): 7033-7041.
[7] 杨世玉, 赵人达, 曾宪帅, 贾文涛, 靳贺松, 李福海. 用自然纤维增强地聚物材料:综述[J]. 材料导报, 2021, 35(7): 7107-7113.
[8] 刘益良, 苏幼坡, 殷尧, 赵江山, 王硕, 莫宗云. 膨润土改性胶凝材料的研究进展[J]. 材料导报, 2021, 35(5): 5040-5052.
[9] 陈新明, 史玉良, 焦华喆, 靳翔飞, 吴亚闯, 谭毅. 基于搜索锥算法的纤维分布特征及对BFRC的增强机制[J]. 材料导报, 2021, 35(4): 4061-4066.
[10] 张戎令, 郝兆峰, 王起才, 马丽娜, 吕文达, 李文波. 核心混凝土缺陷对钢管混凝土构件徐变影响规律及预测模型研究[J]. 材料导报, 2021, 35(4): 4099-4104.
[11] 史金华, 史才军, 欧阳雪, 刘剑辉, 黄勇, 吴泽媚. 超高性能混凝土受压弹性模量研究进展[J]. 材料导报, 2021, 35(3): 3067-3075.
[12] 王尚伟, 朱海堂, 王博, 寇磊. 混凝土配合比优化设计的紧密堆积理论综述[J]. 材料导报, 2021, 35(3): 3085-3091.
[13] 孙国文, 王朋硕, 张营, 闫娜. 水下不分散混凝土性能的研究进展[J]. 材料导报, 2021, 35(3): 3092-3103.
[14] 姜骞, 于诚, 袁森森, 冉千平. 超早强聚羧酸对低坍落度混凝土流变与气泡结构经时变化的影响[J]. 材料导报, 2021, 35(20): 20022-20027.
[15] 张戎令, 郝兆峰, 祁强, 王起才, 马丽娜, 黄国栋. 考虑温度变化的钢管混凝土徐变试验研究及预测模型[J]. 材料导报, 2021, 35(20): 20028-20034.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed