Please wait a minute...
材料导报  2021, Vol. 35 Issue (5): 5199-5205    https://doi.org/10.11896/cldb.19030113
  高分子与聚合物基复合材料 |
聚碳酸酯耐溶剂性能研究进展
邹在平1,2, 吴悦梅1, 赵秀丽2
1 成都航空职业技术学院,先进复合材料成型技术应用研究中心,成都 610100
2 中国工程物理研究院,化工材料研究所,绵阳 621000
Research Progress on Solvent Resistance of Polycarbonate
ZOU Zaiping1,2, WU Yuemei1, ZHAO Xiuli2
1 Applied Research Center of Advanced Composite Manufacturing Technology, Chengdu Aeronautic Polytechnic, Chengdu 610100, China
2 Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang 621000, China
下载:  全 文 ( PDF ) ( 5019KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 聚碳酸酯(PC)是一种综合性能优异的通用工程塑料,具有较好的抗冲击性能、电气绝缘性能、透光性能、耐蠕变性和耐老化性等优点,目前已大量应用于汽车工业、航空航天、建筑建材、医疗卫生和家用电器等领域。然而,由于分子网络疏松且含有大量酯基,聚碳酸酯存在耐溶剂性差的缺点,特别是在有机溶剂和碱性溶液环境中,很容易发生溶胀和应力开裂,从而导致制品报废,阻碍了聚碳酸酯进一步快速发展。
目前,针对聚碳酸酯耐溶剂性能较差的问题,学术界和工业界开展了广泛的研究。高分子材料的结构决定其性能,其耐溶剂性与材料内部结构密切相关,因此聚碳酸酯耐溶剂性能的提升可从材料结构着手,通过化学或物理共混改性得以实现。另外,从实际产品应用角度来讲,通过制品的表面处理或者涂渡层的应用,能够避免制品内部材料与敏感溶剂直接接触,从而降低聚碳酸酯溶剂应力开裂的风险。虽然目前相关研究卓有成效,但是对化学或者物理改性法的作用机理还缺乏系统性研究,表面处理法的成本、时效和材料后续加工仍存在一定的问题,聚碳酸酯耐溶剂性能的潜力还有望进一步挖掘。
鉴于国内外很少有文章针对聚碳酸酯耐溶剂性能进行归纳综述,本文简介了聚碳酸酯耐溶剂性能的基本情况,并介绍了聚合物溶剂应力开裂的测试方法,接着从化学改性、物理共混和表面处理三个角度综述了提高聚碳酸酯及其制品耐溶剂性能的途径,最后结合国内外研究现状进行了总结与展望,指出物理共混法是目前制备耐溶剂聚碳酸酯最为可行有效的方法,未来还应进一步开展温度和紫外等外界环境因素与溶剂的协同老化研究。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
邹在平
吴悦梅
赵秀丽
关键词:  聚碳酸酯  耐溶剂性能  溶剂应力开裂  老化    
Abstract: Polycarbonate (PC) is a kind of general engineering plastics with excellent comprehensive properties. It has good impact resistance, electrical insulation, light transmittance, creep resistance and aging resistance. At present, PC has been widely used in aviation and automobile industry, building materials, medical and health care, household appliances and other fields. However, due to the loose molecular network and a large number of ester groups, PC has the disadvantage of poor solvent resistance, especially in the environment of organic solvent and alkaline solution, it is easy to occur swelling and stress cracking, which leads to product scrapping and hinders the further rapid development of PC.
At present, in view of the poor solvent resistance of PC, academia and industry have carried out extensive research. The structure of polymer material determines its performance, and its solvent resistance is closely related to the internal structure of the material. Therefore, the improvement of the solvent resistance of PC can be realized from the material structure through chemical or physical modification. In addition, from the perspective of practical product application, through the surface treatment of products or the application of transfer coating, it can avoid the direct contact between the internal materials of products and sensitive solvents, thus reducing the risk of PC solvent stress cracking. Although the relevant research has been fruitful, the mechanism of chemical or physical modification methods is still lack of systematic research. There are still some problems in the cost, aging and material subsequent processing of surface treatment methods. And the potential of solvent resistance of PC is expected to be further explored.
In view of few articles at home and abroad to summarize the solvent resistance of PC, the basic situation of solvent resistance of PC is briefly introduced. And the test methods of environmental stress cracking of polymer are introduced, too. Then, the ways of improving solvent resistance of PC and its products are summarized from three aspects: chemical modification, physical blending and surface treatment. Finally, the research status at home and abroad is summarized and prospected. It is pointed out that physical blending is the most effective method to prepare solvent-resistant PC at present. And the synergistic aging of solvents with environmental factors such as temperature and ultraviolet radiation should be further studied in the future.
Key words:  polycarbonate    solvent resistance    solvent stress cracking    aging
               出版日期:  2021-03-10      发布日期:  2021-03-12
ZTFLH:  TB324  
基金资助: 四川省教育厅自然科学重点项目(15ZA0342);成都航空职业技术学院校级自然科学研究项目(061838)
通讯作者:  zzp925@126.com   
作者简介:  邹在平,成都航空职业技术学院专业教师,工程师,先进复合材料成型技术应用研究中心秘书。2013年6月毕业于大连理工大学,获得工学学士学位,2016年6月于中国工程物理研究院取得工学硕士学位。目前主要研究领域为复合材料基体改性与结构设计,以第一作者或通讯作者身份在RSC Advances、《高分子通报》《工程塑料应用》和《塑料工业》等期刊发表论文数篇,指导学生参加SAMPE国内与国际复合材料桥梁比赛,多次获得单项冠军与总冠军。
引用本文:    
邹在平, 吴悦梅, 赵秀丽. 聚碳酸酯耐溶剂性能研究进展[J]. 材料导报, 2021, 35(5): 5199-5205.
ZOU Zaiping, WU Yuemei, ZHAO Xiuli. Research Progress on Solvent Resistance of Polycarbonate. Materials Reports, 2021, 35(5): 5199-5205.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19030113  或          http://www.mater-rep.com/CN/Y2021/V35/I5/5199
1 Zhang X W, Wu N, Zhang X, et al. Journal of Materials Engineering,2017,45(11),30(in Chinese).
张晓雯,吴南,张旋,等.材料工程,2017,45(11),30.
2 Zhang L. Chemical Industry,2018,36(1),1(in Chinese).
张丽.化学工业,2018,36(1),1.
3 Huang K, Yao Q. Polymer Degradation and Stability,2015,113,86.
4 Shi G L, Li F S, Tian H B. Materials Review,2006(Z1),404(in Chinese).
史国力,李复生,田红兵.材料导报,2016(Z1),404.
5 Lewis P R. Engineering Failure Analysis,2009,16(6),1816.
6 Kjellander C K, Nielsen T B, Ghanbari-Siahkali A, et al. Polymer Degradation and Stability,2008,93(8),1486.
7 Yan C G. Study on environmental stress cracking behavior of transparent polycarbonate:the prior aging effect and surface coating protection. Ph.D. Thesis, Zhengzhou University, China,2017(in Chinese).
闫辰光.PC透明件的溶剂-应力开裂行为:环境老化影响与涂层防护研究.博士学位论文,郑州大学,2017.
8 Lewis P R. Engineering Failure Analysis,2009,16(6),1816.
9 Jansen J, Technimet S. In: Society of Plastics Engineers Annual Technical Conference. Boston,2005,pp.173.
10 Turnbull A, Maxwell A, Pillai S. Polymer Testing,2000,19(2),117.
11 Jansen J A. Advanced Materials & Processes,2004,162(6),50.
12 Li F S, Yin J Z, Wei D W, et al. Chemical Industry and Engineering Progress,2002,21(6),395(in Chinese).
李复生,殷金柱,魏东炜,等.化工进展,2002,21(6),395.
13 Gilbert M. Brydson’s Plastics Materials. Butterworth-Heinemann publications, UK,2016.
14 Saharudin M S, Atif R, Shyha I, et al. RSC Advances,2016,6(2),1076.
15 Silva P P J D O, Araújo P L, Da Silveira L B, et al. Radiation Physics and Chemistry,2017,130,123.
16 Zhong Y L, Zhang H F, Wang X L. Failire Analysis and Prevention,2012,7(3),172(in Chinese).
钟艳莉,张洪峰,王晓丽.失效分析与预防,2012,7(3),172.
17 Wright D C. Environmental stress cracking of plastics, iSmithers Rapra Publishing, UK,1996.
18 Robeson L M. Polymer Engineering & Science,2013,53(3),453.
19 Hopmann C, Borchmann N, Koch S, et al. Polymer Engineering & Science,2019,59(1),361.
20 Hough M, Wright D. Polymer Testing,1996,15(5),407.
21 Altstaedt V, Keiter S, Renner M, et al. Macromolecular Symposia,2004,214(1),31.
22 Choi B H, Weinhold J, Reuschle D, et al. Polymer Engineering & Science,2009,49(11),2085.
23 Cheng J J, Polak M A, Penlidis A. Tunnelling and Underground Space Technology,2011,26(4),582.
24 Jiang S L, Hua Y Q. China Plastics Industry,2011,39(5),82(in Chinese).
江盛玲,华幼卿.塑料工业,2011,39(5),82.
25 Hachiya H, Yoneda H, Matsuda Y, et al. Japanese Journal of Polymer Science and Technology,2000,57(1),15.
26 Woo B G, Choi K Y, Song K H. Industrial & engineering chemistry research,2001,40(5),1312.
27 Li J, Arnold J, Isaac D. Journal of materials science,1994,29(12),3095.
28 Jiajun L, Isaac D, Arnold J. Materials Science and Engineering: A,1996,214(1-2),68.
29 Han X, Hu Y, Tang M, et al. Polymer Chemistry,2016,7(21),3551.
30 Marks M, Sekinger J. Macromolecules,1994,27(15),4106.
31 Knauss D M, Yoon T H, Mcgrath J E. Polymer,2002,43(24),6415.
32 Zhang J L, Qu B H. China Plastics,2016,30(1),1(in Chinese).
章家立,瞿秉华.中国塑料,2016,30(1),1.
33 张希文,朱栋栋,胡衍平,等.中国专利,CN101654516,2010.
34 Brunelle D J, Krabbenhoft H O, Bonauto D K. Macromolecular Symposia,1994,77(1),117.
35 Liu Y, Ren W M, Wang M, et al. Angewandte Chemie International Edition,2015,54(7),2241.
36 Hopson P L. The effect of polymer blending on environmental stress crac-king resistance: Role of polycarbonate blend morphology, miscibility, and crystallinity. Ph.D. Thesis, The University of Southern Mississippi, USA,2005.
37 Robeson L M. Polymer blends: A Comprehensive Review, Hanser Publis-hers, Germany,2007.
38 Chen Z J, Wu S Z, Lu J R, et al. China Plastics Industry,2009,37(8),18(in Chinese).
陈振嘉,吴水珠,卢家荣,等.塑料工业,2009,37(8),18.
39 Qian Z G, Yi J L, Li Z M, et al. Engineering Plastics Application,2016,44(1),49(in Chinese).
钱志国,尹继磊,李正梅,等.工程塑料应用,2016,44(1),49.
40 Kambour R, Chu C, Avakian R. Journal of Polymer Science Part B: Polymer Physics,1986,24(9),2135.
41 Li W Q. Study on properties of PC/PBT alloy used for automotive. Master’s Thesis, Donghua University, China,2014(in Chinese).
李文强.汽车用PC/PBT合金材料性能的研究.硕士学位论文,东华大学,2014.
42 Lu J R, Wu S Z, Zhao J Q, et al. China Plastics Industry,2008,36(10),9(in Chinese).
卢家荣,吴水珠,赵建青,等.塑料工业,2008,36(10),9.
43 Yu C M, Wu S Z, Lu J R, et al. China Plastics,2009(8),13(in Chinese).
余昌敏,吴水珠,卢家荣,等.中国塑料,2009(8),13.
44 Song X Y, Wu S Z, Lu J R, et al. China Plastics Industry,2009,37(7),12(in Chinese).
宋湘怡,吴水珠,卢家荣,等.塑料工业,2009,37(7),12.
45 Manjunatha Nanjegowda L, Bommulu R, Juikar V, et al. Industrial & Engineering Chemistry Research,2013,52(16),5672.
46 Yang X M, Dai W L, Jiang N, et al. Plastics,2007,36(5),16(in Chinese).
杨晓明,戴文利,姜娜,等.塑料,2007,36(5),16.
47 Siripurapu S, Chakravorty A, Singh N. In: Antec-Conference Procee-dings. Hoboken: Society of Plastics Engineers,2007,pp.799.
48 Liu J W, Gao S J, Shen C H. China Plastics,2017,31(2),8(in Chinese).
刘俊威,高山俊,沈春晖.中国塑料,2017,31(2),8.
49 李紫薇.中国专利,CN103709712A.2014.
50 Zhou H J, Wang J F. Journal of North China Institute of Technology,2000,21(4),334(in Chinese).
周海骏,王久芬.华北工学院学报,2000,21(4),334.
51 Arnold J. Materials Science and Engineering: A,1995,197(1),119.
52 Wu J H. Surface modification of polycarbonate(PC) by low energy ion beam. Master’s Thesis, Hefei University of Technology, China,2008(in Chinese).
伍建华.PC(PC)透明材料的低能离子束表面改性研究.硕士学位论文,合肥工业大学,2008.
53 Wang S H, Liu J G, Lv M, et al. Opto-Electronic Engineering,2013,40(7),77(in Chinese).
王素焕,刘建国,吕铭,等.光电工程,2013,40(7),77.
54 Zheng Z L. Research of surface modification technique on polycarbonate(PC). Master’s Thesis, Hefei University of Technology, China,2013(in Chinese).
郑正龙.聚碳酸酯(PC)表面改性技术研究.硕士学位论文,合肥工业大学,2013.
55 Zhong Y L, Zhang X, Zhang H F. Modern Paint and Finishing,2012,15(6),9(in Chinese).
钟艳莉,张旋,张洪峰.现代涂料与涂装,2012,15(6),9.
56 Wang D Z. Shanghai Coatings,2000(4),29(in Chinese).
王德中.上海涂料,2000(4),29.
57 Jankowski P, Ogończyk D, Lisowski W, et al. Lab on a Chip,2012,12(14),2580.
58 Yan C, Zhang J, Han J, et al. Polymer Testing,2017,60,6.
59 Jakobs S, Schulz U, Duparré A, et al. Fresenius’ Journal of Analytical Chemistry,1997,358(1-2),242.
60 Chen T, Wuu D, Wu C, et al. Thin Solid Films,2006,514(1-2),188.
61 Jang M, Park C K, Lee N Y. Sensors and Actuators B: Chemical,2014,193,599.
62 Wang Y Z. Electroplating & Pollution control,2003,23(6),23(in Chinese).
王艳芝.电镀与环保,2003,23(6),23.
63 Zhou Q H. Study on fabrication of microdevices on polycarbonate sheets by UV-patterning in combination with silver activating. Master’s Thesis, Zhejiang University, China,2010(in Chinese).
周清华.PC表面紫外光照定位银催化化学镀制备金属微器件的研究.硕士学位论文,浙江大学,2010.
64 Tao Y L. China Plastics Industry,2014,42(4),120(in Chinese).
陶永亮.塑料工业,2014,42(4),120.
[1] 熊亚, 江猛, 李宜航, 吴江兵, 杨航, 熊玉竹. 白炭黑负载抗氧剂在天然橡胶中的分散性及防老化作用[J]. 材料导报, 2021, 35(6): 6200-6205.
[2] 徐可, 陆春华, 宣广宇, 倪铭志, 张灵灵, 周隽, 徐荣进. 温度老化对GFRP/BFRP筋残余弯曲性能的影响[J]. 材料导报, 2021, 35(4): 4053-4060.
[3] 王博闻, 方针, 付志瑶, 胡建平, 彭永晶. 不同SiO2含量对氧化锌电阻片通流性能的影响[J]. 材料导报, 2020, 34(Z2): 52-56.
[4] 刘二伟, 贾文清, 薛飞, 范敏郁, 於旻, 余伟炜. 基于PCVN小试样评估主管道的动态断裂韧性研究[J]. 材料导报, 2020, 34(Z2): 418-422.
[5] 张勤玲, 黄志义. FTIR分峰拟合法定量分析沥青胶浆在含盐高温高湿环境中的结构变化[J]. 材料导报, 2020, 34(8): 8083-8089.
[6] 吴志昂, 郑晓平, 龚莉雯, 王璠, 杨子程, 张利, 包锦标. 发泡工艺及超临界二氧化碳诱导结晶作用对聚碳酸酯发泡行为的影响[J]. 材料导报, 2020, 34(8): 8200-8204.
[7] 吴文博, 张志明, 王俭秋, 韩恩厚, 柯伟. 热老化316L不锈钢在模拟核电溶解氧/氢高温高压水中应力腐蚀裂纹扩展行为[J]. 材料导报, 2020, 34(6): 6144-6150.
[8] 张帅, 张健. 冷冻干燥法制备有机蒙脱土及其改性沥青性能研究[J]. 材料导报, 2020, 34(4): 4037-4042.
[9] 刘荣, 马玉宏, 赵桂峰, 王康康. 老化-海蚀循环作用下高阻尼橡胶隔震支座橡胶材料性能劣化规律[J]. 材料导报, 2020, 34(4): 4166-4173.
[10] 易鹏,吴国娟,段文焱,吴敏,潘波. 生物炭的改性和老化及环境效应的研究进展[J]. 材料导报, 2020, 34(3): 3037-3043.
[11] 张广泰, 曹银龙, 陆东亮, 王明阳, 张文梅. 热氧老化下废旧轮胎隔震垫隔震性能及压应力相关性研究[J]. 材料导报, 2020, 34(24): 24170-24177.
[12] 曹金梅, 李璐, 张瑞, 李勇智, 王政宇, 陈昆, 宋建成. 矿用干式变压器诺美(Nomex)绝缘纸多因子老化过程的降解规律[J]. 材料导报, 2020, 34(22): 22195-22200.
[13] 张广泰, 章金鹏, 陆东亮, 王明阳, 张文梅. 热氧老化作用下叠层轮胎隔震垫力学性能时变规律[J]. 材料导报, 2020, 34(16): 16182-16188.
[14] 周颖, 郭建兵, 何玮頔, 徐定红, 王蒙. 紫外老化对长玻纤增强聚丙烯复合材料流变性能和非等温结晶动力学的影响[J]. 材料导报, 2020, 34(12): 12146-12151.
[15] 肖瑶, 黄理, 邱睿智, 叶小球, 敖冰云. 钚中氦行为研究进展[J]. 材料导报, 2020, 34(11): 11137-11144.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed