Please wait a minute...
材料导报  2020, Vol. 34 Issue (16): 16182-16188    https://doi.org/10.11896/cldb.19060137
  高分子与聚合物基复合材料 |
热氧老化作用下叠层轮胎隔震垫力学性能时变规律
张广泰, 章金鹏, 陆东亮, 王明阳, 张文梅
新疆大学建筑工程学院,乌鲁木齐 830047
Time-varying Law of Mechanical Properties of Scrap Tire Rubber Pads Under Thermal Aging
ZHANG Guangtai, ZHANG Jinpeng, LU Dongliang, WANG Mingyang, ZHANG Wenmei
School of Architecture and Engineering, Xinjiang University, Urumqi 830047, China
下载:  全 文 ( PDF ) ( 5994KB )     补充信息
输出:  BibTeX | EndNote (RIS)      
摘要 为研究叠层轮胎隔震垫(STP)在不同老化时间下的力学性能,选取180 mm×180 mm的六层STP为试验对象,在100 ℃恒温条件下,对STP试件分别进行113 h、223 h、336 h、449 h加速老化试验。对老化后的STP进行压缩特性、剪切特性、剪应变相关性等力学性能试验研究,分析了STP的抗压弹性模量、竖向刚度、屈服后刚度、屈服力及水平等效刚度随老化时间的变化规律。提出适用于STP且可缩短试验时长的抗压弹性模量试验方法,基于改进试验方法所得结果,对比分析老化试验前后STP的抗压弹性模量并通过竖向刚度计算理论对其进行验证。试验结果表明:改进后适用于STP的抗压弹性模量试验方法节约时间且结果准确,STP经老化223 h(室温下使用50 a)时抗压弹性模量与竖向刚度均达到最大,223 h后呈现略微下降的趋势,随后基本持平。同时采用阿累尼乌斯方程拟合了不同老化时间下STP压缩性能指标的时变规律公式。剪应变在25%~100%范围内时,不同老化时长下STP的水平等效刚度、屈服后刚度均随着剪应变的增大而减小。其屈服力随剪应变的增大而增大。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张广泰
章金鹏
陆东亮
王明阳
张文梅
关键词:  叠层轮胎隔震垫(STP)  力学性能  老化  时变规律    
Abstract: In order to study the mechanical properties of scrap tire rubber pads (STP) under different aging time, a 6-layer STP of 180 mm×180 mm was selected as the test object. The accelerated aging tests of STP specimens were carried out for 113 h, 223 h, 336 h, and 449 h, respectively, at a constant temperature of 100 ℃. The mechanical properties of STP after aging were tested and studied, such as compression properties, shear properties, shear strain correlation and so on. The changes of compressive elastic modulus, vertical stiffness, post-yield stiffness, yield force, and horizontal equivalent stiffness of STP with aging time were analyzed. This paper proposed a test method of compressive elastic modulus which was suitable for STP and could shorten the test time. Based on the results of the improved test method, the compressive elastic modulus of STP before and after aging test was compared and verified by vertical stiffness calculation theory. The test results showed that the improved compressive elastic modulus test method suitable for STP saved time and the result was accurate. When the STP was aged for 223 h (50 a at room temperature), the compressive elastic modulus and vertical stiffness were the highest, after 223 h, it showed a slight downward trend, and then it was basically flat. At the same time, the Arrhenius equation was used to fit the time-varying regularity formula of the STP compression perfor-mance index under different aging time. When the shear strain was in the range of 25%—100%, the horizontal equivalent stiffness and the post-yield stiffness of STP decrease with the increase of shear strain under different aging time. Its yield force increases as the shear strain increases.
Key words:  scrap tire rubber pads (STP)    mechanical properties    aging    time-varying regular
               出版日期:  2020-08-25      发布日期:  2020-07-24
ZTFLH:  TU352.12  
基金资助: 国家自然科学基金(51568064);自治区教育厅自然科学重点项目(XJEDU2020I005)
通讯作者:  zgtlxh@126.com   
作者简介:  张广泰,男,新疆大学教授,博士研究生导师,国家注册监理工程师。现任新疆大学新校区建设指挥部副总指挥、办公室主任,新疆大学建筑工程学院党委书记,新疆维吾尔自治区重点学科“结构工程”学科方向学术带头人;国家高校特色专业及自治区优秀教学团队核心成员;中国建筑学会工程管理研究分会第七届、第八届理事,新疆土木工程学会理事,新疆住房与建设厅高强钢筋和高强混凝土推广应用专家组成员,乌鲁木齐高性能混凝土专业委员会成员,自治区科技进步奖评审专家,自治区科协评审专家;编审自治区地方规程2部,发明专利1项,实用型专利2项,发表核心期刊论文50余篇;组织或参与工程设计10余项。曾获自治区科技进步奖1项,获自治区自然科学优秀论文奖3项。主编国家规划教材1部;现主持新疆维吾尔自治区精品课程1门,曾获自治区高等教育成果一等奖1项,新疆大学高等教育成果特等奖,新疆大学“优秀硕士生导师”,已先后指导40余名研究生。研究工作主要包括新型建筑材料和减隔震等方面。
引用本文:    
张广泰, 章金鹏, 陆东亮, 王明阳, 张文梅. 热氧老化作用下叠层轮胎隔震垫力学性能时变规律[J]. 材料导报, 2020, 34(16): 16182-16188.
ZHANG Guangtai, ZHANG Jinpeng, LU Dongliang, WANG Mingyang, ZHANG Wenmei. Time-varying Law of Mechanical Properties of Scrap Tire Rubber Pads Under Thermal Aging. Materials Reports, 2020, 34(16): 16182-16188.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19060137  或          http://www.mater-rep.com/CN/Y2020/V34/I16/16182
1 Chen W,Xiong F. Journal of Guizhou Normal University(Natural Sciences), 2014,32(4),94(in Chinese).
陈文,熊峰.贵州师范大学学报(自然科学版), 2014, 32(4),94.
2 Chen W,Xiong F. Sichuan Architecture, 2012,32(1),113(in Chinese).
陈文,熊峰.四川建筑, 2012,32(1),113.
3 Zhang G T,Lu D L,Zhang J P,et al. Materials Reports B: Research Papers,2019,33(9),3140(in Chinese).
张广泰,陆东亮,章金鹏,等.材料导报:研究篇,2019,33(9),3140.
4 Liu W G,Ren Y,He W F,et al. World Earthquake Engineering, 2012,28(4),131(in Chinese).
刘文光,任玥,何文福,等.世界地震工程, 2012,28(4),131.
5 Zeng D M.Test and analysis on performance of rubber bearing and seismically isolated building. Master’s Thesis, China Academy of Building Research,China,2007(in Chinese).
曾德民. 橡胶隔震支座的刚度特征与隔震建筑的性能试验研究. 硕士学位论文,中国建筑科学研究院,2007.
6 Zhou F L. Seismic control of engineering structures, Seismological Press,China,1997(in Chinese).
周福霖.工程结构减震控制,地震出版社,1997.
7 Lou J,Lin J. China Water Transport, 2007(12),80(in Chinese).
楼杰,林杰.中国水运(理论版), 2007(12),80.
8 Gu H S,Itoh Yoshito. Journal of Beijing University of Technology, 2012,38(2),186(in Chinese).
顾浩声,伊藤義人.北京工业大学学报, 2012,38(2),186.
9 Zhuang X Z,Zhou F L,Shen C Y,et al. Journal of Beijing University of Technology, 2011,37(7),993(in Chinese).
庄学真,周福霖,沈朝勇,等.北京工业大学学报, 2011,37(7),993.
10 Zhuang X Z,Zhou F L,Xu L,et al. Journal of Xi’an University of Architecture & Technology(Natural Science Edition), 2009,41(6),791(in Chinese).
庄学真,周福霖,徐丽,等.西安建筑科技大学学报(自然科学版), 2009,41(6),791.
11 Liu W G,Yang Q R,Zhou F L. Journal of Guangzhou University(Natural Science Edition), 2002(6),51(in Chinese).
刘文光,杨巧荣,周福霖.广州大学学报(自然科学版), 2002(6),51.
12 Liu W G,Li Z R,Zhou F L, et al. Earthquake Engineering and Enginee-ring Dynamics, 2002(6),115(in Chinese).
刘文光,李峥嵘,周福霖,等.地震工程与工程振动,2002(6),115.
13 Gu H S,Itoh Y. Advances in Structural Engineering, 2010,6(13),1105.
14 Gu H S,Itoh Y. Advanced Materials Research, 2011,163,3343.
15 Xu B,Tang J X. Engineering Seismic, 1995(4),41(in Chinese).
许斌,唐家祥.工程抗震, 1995(4),41.
16 Ma Y H,Li Y M,Zhao G F,et al. Seismic Engineering and Engineering Vibration, 2017,37(5),38(in Chinese).
马玉宏,李艳敏,赵桂峰,等.地震工程与工程振动, 2017,37(5),38.
17 Turer A,Ozden B.Materials and Structures/Materiaux et Constructions, 2008,41(5),891.
18 Mishra H K, Igarashi A, Matsushima H. Bulletin of Earthquake Engineering, 2013, 11(2),687.
19 Huma K M, Akira I. Structural Engineering and Mechanics,2013,48(4),479.
20 Lindley P B. Joint Ssaling and Bearing System for Concrete Structures, 1981(1),353.
21 Architectural Institute of Japan.Recommendation for the Design of Base Isolated Building, Tokyo:Marozon Corporation,1993.
22 Chen B H.Experimental study on seismic isolation behavior of simple isolated structures for tiled tires in villages and towns.Master’s Thesis, Xinjiang University,China,2017(in Chinese).
陈彪悍.村镇建筑叠层轮胎简易隔震结构的隔震性能试验研究.硕士学位论文,新疆大学,2017.
23 Wang J W. Study on test device and test method for the compressive modulus of elasticity E of plate type elastomeric pad bearings.Master’s Thesis, Chang’an University, 2013(in Chinese).
汪军伟. 板式橡胶支座抗压弹性模量E测试装置及试验方法研究.硕士学位论文,长安大学,2013.
24 Li Y S, Wang H J, Zhao M L. Synthetic Materials Aging and Application, 2000(4),19(in Chinese).
李玉松,王浩江,赵慕莲.合成材料老化与应用, 2000(4),19.
[1] 何金珊, 方平, 王西涛, 武会宾. Fe-Mn-Al-Nb系轻质低温钢的组织和性能[J]. 材料导报, 2021, 35(2): 2074-2077.
[2] 李健, 左婷婷, 薛江丽, 茹亚东, 赵兴科, 高召顺, 韩立, 肖立业. 热压烧结及轧制工艺对CuCr/CNTs复合材料组织与性能的优化[J]. 材料导报, 2021, 35(2): 2078-2085.
[3] 史平安, 邱勇, 万强, 胡文军, 晏顺坪. 60Co γ射线辐照对硅泡沫材料压缩性能的影响[J]. 材料导报, 2021, 35(2): 2151-2156.
[4] 黄勇, 史才军, 欧阳雪, 张超慧, 史金华, 吴泽媚. 混凝土劈裂拉伸测试方法及性能研究进展[J]. 材料导报, 2021, 35(1): 1131-1140.
[5] 张欣雨, 毛小南, 王可, 陈茜. 典型α+β钛合金组织对静态和动态性能的影响[J]. 材料导报, 2021, 35(1): 1162-1167.
[6] 张鹏斐, 乔志军, 张志佳, 于镇洋, 赵潭, 苟金龙. 加入增韧材料提高TiO2复合纳米电极的力学和电化学性能[J]. 材料导报, 2020, 34(Z2): 24-29.
[7] 王博闻, 方针, 付志瑶, 胡建平, 彭永晶. 不同SiO2含量对氧化锌电阻片通流性能的影响[J]. 材料导报, 2020, 34(Z2): 52-56.
[8] 王效军, 刘太奇. 碳纳米颗粒对碳纳米管复合材料电热-力学性能的影响[J]. 材料导报, 2020, 34(Z2): 63-66.
[9] 常洪雷, 陈繁育, 金祖权, 王广月, 刘健. 再生骨料混凝土在护岸工程应用的可行性[J]. 材料导报, 2020, 34(Z2): 206-211.
[10] 力乙鹏, 李婷. 土壤固化剂的固化机理与研究进展[J]. 材料导报, 2020, 34(Z2): 273-277.
[11] 贺龙朝, 荆磊, 余森, 徐云浩, 于振涛. 医用可降解镁基复合材料的研究现状及趋势[J]. 材料导报, 2020, 34(Z2): 323-326.
[12] 郝文俊, 孙荣禄, 牛伟, 谭金花, 李小龙. 合金元素影响高熵合金涂层组织及力学性能综述[J]. 材料导报, 2020, 34(Z2): 330-333.
[13] 王力, 裴迪, 李新林, 裴志洋. 轧制ATZ331合金的显微组织与力学性能[J]. 材料导报, 2020, 34(Z2): 356-359.
[14] 王鸣, 张旭, 赵阳, 都亮, 程丽丽, 梁萌. 轧制延展率对IF钢箔力学性能的影响[J]. 材料导报, 2020, 34(Z2): 395-398.
[15] 刘二伟, 贾文清, 薛飞, 范敏郁, 於旻, 余伟炜. 基于PCVN小试样评估主管道的动态断裂韧性研究[J]. 材料导报, 2020, 34(Z2): 418-422.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[4] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[5] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[6] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[7] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[8] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[9] ZHANG Yating, REN Shaozhao, DANG Yongqiang, LIU Guoyang, LI Keke, ZHOU Anning, QIU Jieshan. Electrochemical Capacitive Properties of Coal-based Three-dimensional Graphene Electrode in Different Electrolytes[J]. Materials Reports, 2017, 31(16): 1 -5 .
[10] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed